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Studying classical wave propagation in periodic high contrast photonic and acoustic media
naturally leads to the following spectral problem: —Au = Aeu, where ¢(x) (the dielectric
constant) is a periodic function that assumes a large value ¢ near a periodic graph ¥ in R2
and is equal to 1 otherwise. High contrast regimes lead to appearence of pseudo-differential
operators of the Dirichlet-to-Neumann type on graphs. The paper contains a technique of
approximating these pseudo-differential spectral problems by much simpler differential ones
that can sometimes be resolved analytically. Numerical experiments show amazing agreement
between the spectra of the pseudo-differential and differential problems.
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1. Introduction

Photonic crystals are composite materials of periodic structure; they can be viewed
as optical analogs of semi-conductors [45,71]. Introduction of these materials promises
to bring about revolutionary changes in many areas of technology (lasers, comput-
ers, information transmission, etc.). The reader can find the relevant physics surveys
in [10,15,39,44,53,57,58,69,70] and a survey of mathematical issues involved in [50].
Acoustic analogs of photonic crystals are also of significant interest. One of the major
topics in photonic crystals theory and its acoustic analog is numeric and analytic study
of the spectral structure of such materials. In particular, one of the principal issues is ex-
istence of spectral gaps. However, spectral analysis of such complex materials is rather
hard [50]. It has been noticed, though, that high contrast thin structures (like thin opti-
cally dense dielectric walls surrounding air voids) favor spectral gaps. Although direct
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analysis of such media might seem even more complicated, one hopes that they could
be approximately described by models of lower dimension that would be more willing
to submit to analysis. Indeed, such approximate models are widely used in theory of
mesoscopic systems [3,16,17,35-37,40,43,68] where electron propagation in quantum
wire circuits can often be described by simplified one-dimensional models on graphs
[1,5,22-24,52,60-64,66]. As it was shown in [6,7,25,27-31,50,51], a somewhat similar
spectral behavior can be observed in the photonic crystal situation. Namely, in the case
of 2D thin high contrast dielectric structures the electromagnetic waves in a photonic
crystal split into two classes: the “air” waves that essentially concentrate in the air and
bounce off the dielectric walls, and “dielectric” waves that use the thin dielectric walls
as a waveguide for propagation. While the spectral structure of the air waves is rather
simple and nice (with wide gaps opening), the dielectric waves lead to much more com-
plex spectra. It was shown in [30] that propagation of these waves can be approximately
described by a pseudo-differential operator (Dirichlet to Neumann map) on the graph X
that reflects the geometry of the material. Such representation is simpler, and of lower
dimension than the original problem, thus allowing one to conduct a more thorough
analysis of spectra. In particular, the possibility of opening spectral gaps was analyti-
cally proven in [27,28] using this model. However, due to the pseudo-differential nature
of such approximation the corresponding spectrum often can not be found analytically;
solution of the problem still requires considerable numerical computations.

It was noticed in [51] (see also [7,50]) that in certain cases one can make one more
step of approximation and reduce the pseudo-differential problem to a differential one;
the latter can then be studied analytically, or even solved explicitly. In the above men-
tioned works such a reduction to a differential problem was achieved in the restricted
case of a smooth structure (which means in particular that the graph could not have ver-
tices of valence higher than two); more practically interesting cases were not considered.
The aim of this paper is to develop a (partially heuristic) technique that enables one to
reduce the pseudo-differential problem to a differential one in more general non-trivial
situations. As shown in the present paper, some of the resulting differential problems can
then be resolved analytically, others require little numerical effort, such as finding roots
of a 1-D function (in contrast with the boundary element type approaches required for
the pseudo-differential problem). We provide numerical evidence of an amazing agree-
ment between the spectra of the differential models and the spectra of the corresponding
pseudo-differential models that they approximate. Such a close agreement confirms that
the heuristic steps involved in our derivation do make sense.

We would also like to mention other situations ranging from scattering theory
to tomography, to averaging in dynamical systems, to spectral theory, to study of ef-
fects related to non simple connectedness of physical systems (like the Aharonov—Bohm
effect), where similar differential models on graphs have been used recently [4,5.,9,
11-14,20,21,32-34,47,48,54-56,65].

The paper is structured as follows. The next section sets up the mathematical model
of the problem under investigation. Section 3 contains the main analysis. Here we study
the vertex behavior of the eigenmodes of the Dirichlet-to-Neuman operator on a graph
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under the assumption of symmetry of all junctions. The discovered behavior is then
used in section 4 to prescribe boundary conditions for a differential problem on the
graph. Due to space limitations, we treat here only examples of graphs with symmetric
triple junctions at the vertices (such as, for instance, the honeycomb structure shown in
figure 3). The numerical results are provided showing an extraordinary agreement of
spectra and of dispersion curves for the differential and the original pseudo-differential
problem. Study of some other interesting geometries, as well as of additional spectral
effects are left for a future publication. Sections 4 and 5 are devoted to final remarks and
conclusions and to acknowledgements.

2.  Setting up the model

We will restrict our analysis to the case of 2D photonic crystals and EM waves
propagating along the periodicity plane. In this case there are two possible polarizations
(see [42,44]). We will be interested in the one where the electric field E is perpendicular
to the plane of periodicity (E-fields). As it was shown in [27,28] (see also [25,50]), this is
the only polarization that in the case of high contrast thin structures leads to “dielectric”
modes. The wave propagation in this case is described by the following scalar eigenvalue
problem in 2D

—AE = )e(x)E, (D

where A = (w/c)?, w is the frequency of the wave, c is the speed of light, and &(x) is the
(periodic) electric permittivity function in the plane.

The dielectric function ¢(x) is assumed to have the following structure. A periodic
graph X on the plane represents the geometry of the material. Namely, a dielectric with
a high value of the dielectric constant € occupies a neighborhood of width d <« 1 of X,
and the rest is filled with the air (dielectric constant 1). In other words, £(x) is equal
to € > 1 in a d-neighborhood of ¥ and e(x) = 1 otherwise. An example of a cross-
section of such 2-D structure is shown in figure 1; the dark areas in the picture represent
dielectric, while the rest of the structure is filled with air.

The following result was obtained in [28,30] (see also [7,50]). Assume thatd — 0
and ed — oo. Let us zoom in on the spectrum of the problem (1) by multiplying A by
large parameter ed. After this rescaling, the spectrum of (1) converges to the spectrum
of the Helmholtz type problem

—Au = ASzu. 2)

Here 65 (x) is the delta-function supported by the graph ¥ (i.e., (8, ¢) = f): ¢ (x)dx).
Equation (2) can be understood as follows: function u is harmonic outside graph %, con-
tinuous through ¥, and the jump of its normal derivatives across ¥ is proportional (with
a factor A) to the values of # on X. In other words (see details in [30,51]), problem (2)
is equivalent to the spectral problem

Asu = Au, 3)
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Figure 1. The cross-section of a 2D thin photonic crystallic structure. The dark areas are filled with an
optically dense dielectric with the dielectric constant ¢, while the white ones represent the air (¢ = 1).

where A y is the Dirichlet-to-Neumann operator on the graph . This operator takes a
function u on X, uses it as the Dirichlet boundary data for finding a harmonic function
in R?\ 2, and then produces the jump of the normal derivative of this function across X.
One can easily establish [51] that Ay is a pseudo-differential operator of first order along
smooth parts of X, whose full (rather than just the principal) symbol is 2|&|. This fact
implies that when X is smooth, the spectrum of Ay for large A behaves asymptotically
as 2./, where A, are the eigenvalues of the second derivative operator (—d?/dI?) with
respect to the arc length along 3. Such an asymptotic spectral behavior allows one to ob-
tain simple and often very good estimates of the spectrum [51]. It also simplifies certain
theoretical considerations, since spectra of differential (rather than pseudo-differential)
problems on graphs submit much more readily to analysis.

The main observation made above was that a certain power (namely, square) of the
Dirichlet-to-Neumann operator Ay can be approximated nicely (up to a smoothing oper-
ator) by a differential operator on X. However, this has been established for the restricted
case of smooth ¥ only. Thus in this paper we consider a more interesting and practically
important case of a graph ¥ that does have vertices, and hence singularities. Our goal
is to find differential problems on X that, under the above assumptions, provide approx-
imations of the spectrum of Ay. Although there is still no complete understanding of
this problem yet, we develop an heuristic analysis that for certain geometries results in
differential problems yielding amazingly good approximations for spectra in question.

3. Differential operators on graphs

Given some periodic graph ¥ (whose edges will be assumed to be segments of
straight lines), we are trying to find a differential operator whose spectrum provides
high-frequency asymptotics to the spectrum of the Dirichlet-to-Neumann operator Ay
on X.

A natural candidate is the differential operator

d*My
TN

“

AMM

where [ is the arc length coordinate along each of the edges of the graph and M is a
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natural number. The corresponding spectral problem on each of the graph’s edges will
be written as

d2M A 2M

The reason for the way the spectral problem is written is that along the smooth parts of
the graph the operator Ay “behaves like” 2,/—d?/di2. More precisely, along the edges
the sum (Ayx/2)? + d?/dI? is a smoothing operator [51]. This makes (5) the natural
candidate for spectral approximation. However, neither the operator (4), nor the spectral
problem (5) are defined until appropriate boundary conditions at the nodes and free ends
of the graph ¥ are provided. These conditions at the vertices of the graph are the object
of our investigation. So, our main question can be formulated now as follows:

Can certain boundary conditions be supplied to (5) such that the resulting spectrum
asymptotically for large ) coincides with the spectrum of Ax?

Here is how we approach this problem. We first analyze the vertex behavior of
the eigenmodes of the Dirichlet-to-Neumann operator Ay. In particular, we conclude
that the derivatives of the eigenmodes at the vertices (when the modes are sufficiently
smooth) satisfy some mandatory linear relations. Then these relations are imposed as
boundary conditions on (5). We discover, in particular, that in contrast with the smooth
case, M is not always equal to 1. For instance, for the square geometry one needs
to use M = 2. Our analysis is based on a reliable heuristics rather than on rigorous
proofs (although it probably could be made rigorous with a significant extra effort). In
particular, we cannot show like we did in [51] in the smooth case that the difference A —
(Ax)M is a smoothing operator. The problem is that one deals in this case with a singular
variety X. However, when the spectra of A, and (Ax)™ are compared numerically, they
show miraculous agreement, which suggests validity of the derived results.

3.1. Vertex conditions for Dirichlet-to-Neumann eigenmodes on symmetric star
structures

In this section we will study the behavior near the graph’s vertices of the eigen-
modes of the Dirichlet-to-Neumann operator Ay. We will restrict consideration to the
case of symmetric junction of N edges at each vertex only. It is not clear at the moment
what can be said about nonsymmetric junctions. Since vertex behavior of eigenmodes
should depend on local values of the field only, we will work with a star structure con-
sisting of a single vertex that joins N edges of a finite length. Polar coordinates (r, ¢)
will be used with the origin at the vertex and the polar axis that goes along the bisector
of the angle between two adjacent edges. We denote by & = 27 /N the angle between
two adjacent edges.

The spectral problem for the Dirichlet-to-Neumann operator will be written as

—AV = A8y V, (6)
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O=2n/N

Figure 2. The symmetric N-edge star structure X.

where Jy is the Dirac’s delta-function supported on the symmetric N-edge star struc-
ture X:

N—1 ®
8s(r, 9) = O(R —r)@(r)ZS(go — ®l + 3), R > 1.
=0

Here ®(r) is the Heaviside function:

0, r<0,
®(r)_{1, r>0.
The cut-off function ® (R — r) is utilized to model the finite length R of the edges.
Due to the rotational symmetry of the structure with respect to the cyclic group Zy
of Nth roots of the unity, we can look first at solutions that are transformed according to
an irreducible representation of this group. There are N series of such eigenmodes:

im®d N N
Vau(r,o + @) =V, (r,p)e"", m:—g,..., 3 @)

where [x] stands for the integer part of x. When N is even, the conditions for m =
—[N /2] and m = [N /2] are identical.

Due to our choice of polar coordinates, the star structure is mirror symmetric with
respect to the polar axis. Therefore, it is sufficient to consider non-negative values m =
0,...,[N/2] only.

For a fixed m, symmetry conditions (7) enable us to re-write the problem (3) (or,
equivalently, (6)) for the angular domain

A:{(r,d))‘ —§<(p<§,r>0}
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only. Namely, we are looking for a function V,,(r, ¢) harmonic in A and satisfying the
following two conditions (that correspond respectively to the continuity through ¥ and
the jump of its normal derivative condition across X):

Vm (7", %)e—im@/2 =V, (7", _%)eimq)/z’ (8)
e_im¢/2_aavm <r, %) - eimq’/z_aavm (r, —%) =MO(R —1r)V, (r, %)e_i’"q)/z. )
% %

Notice the appearance of the factor r in the right-hand side of (9), which is due to the
relation 3/9n = r~'9/3¢ between the normal derivative at a point of ¥ and the deriva-
tive with respect to the polar angle ¢. Let us denote the joint value of both sides of (8)
by w,, ().

It is known that the radial Mellin transform (i.e., the Fourier transform in loga-
rithmic coordinates) is a useful tool when studying the behavior of solutions of ellip-
tic boundary value problems around corner points of the boundary (see, for instance,
[38,46]). So, let us introduce a new variable p = Inr. Denoting v,,(p, ¢) = V,,(e”, @),
it is straightforward to check that the problem is reformulated as the equation in a strip

P P
_Avm(/oa(p):oa _3<(p< Ea —00 < p <00, (10)
where A denotes the Laplace operator in the (p, ¢)-plane, with the boundary conditions
P . D\ .
Un (p, 5)6‘1’"‘1’/2 = Uy, (p, —5>e""q’/2 = wy(p) (11)

and

i 0 m P i 0 m P
emm®200m ([ 2 ) _eime2Zm (0 F) —e”@(nR — p)wn(p).  (12)
ap 2 ap 2

We will be looking for a solution V,,(r, ¢) that is bounded in .4 and decays at
infinity, for instance, as

Vi (1, @) < y >0, r > oo. (13)

1+rr’

We are interested in the behavior of this solution at » = 0. Namely, we want to study the
possibility of the Taylor representation

1

d .

Vin <r, 5>e_‘mq’/2 = E Uit + O(r“”’), r—0, a>0. (14)
k=0

If this is possible, we want to know as much as possible about the coefficients

1 O -
_ (k) —im®/2
Un,k = _k‘ Vm <0, —2 )e .
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Specifically, any mandatory linear relations between these coefficients are of interest.
We will always assume continuity of the solution at the vertex, so (14) is assumed to
hold for / = 0 with the values v,, ¢ independent on .

The expansion (14) can be rewritten in terms of w,,(p):

!
Wi (p) = va,kekp + O(e(l+a)p), o0 — —00, a > 0. (15)
k=0

Let us expand w,,(p) into two parts supported on two half-axes:

wn(p) = (1= 0(0)wn(p) + O(P)wn(p) = Wi o(p) + W1 (). (16)
ILe.,
_Jwn(p), p <0,
wm,O(p) - { 0’ 0 > 0,
0, p <0,
W1 (P) = {wm(p) p = 0.

Taking now the Fourier transform (which amounts to the Mellin transform in the original
variable r) and using (15), we get

D0(§) = Z Ik A, (17)

where A(§) is analytic for Imé > —(I 4+ «). On the other hand, due to (13) w,, 1(§)
is analytic in the half-plane Im& < y. We therefore conclude that possibility of a Tay-
lor representation (14) boils down to existence of simple poles of the Mellin transform
Wp.0(§) at the points —ik for k = 0, ..., [, with the residues equal (up to the constant
factor 1/ \/ﬂ ) to the radial derivatives of the original function at r = 0. Existence of
higher order poles would therefore indicate that the Taylor expansion breaks down (usu-
ally some logarithmic terms appear) and hence one cannot use a differential model that
would employ the corresponding derivatives.

We will show now how the problem (10)—(12) leads to a nice algebra of these poles.
Consider the Fourier transform v, (€, ¢) of the function v,, (o, ) with respect to p (i.e.,
the Mellin transform of the original function V,,):

1 o .
1’5m (‘sa 90) = E / Um (,0, q))e—lpi;' d,O (18)

Then equation (10) reduces to

82
(N ®)+ vm(s @) =0 (19)
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with the boundary conditions

o\ . o\ .
ﬁm (S’ _)e—1m<b/2 == 1’5m (S’ __>elm(b/2 = @m (g)a (20)
2 2
o—im®/200m A aim/290m P
dp "' 2 dp U 2
= ,\L /OO W (P)On R — p)e PE qp. (1)
v 27 —0

The solution of the Dirichlet boundary value problem (19)—(20) can be written as
- ) h . ) inh
2 Jcosh(§®/2) 2 /sinh(§D/2

Substituting this expression into the jump condition (21), we obtain an equation for
w(§):
cosm® —cosh§® 2

1 o
sinh £ NG f_oo

Using (16), this can be re-written as

W (8)E wn(P)O(n R — p)e EHdp.  (23)

A
Win,0() = —W,1(8) + Edm(S)[wm,O(g +1) + (wn1(P)OUNR — p))(§ +1], (24)

where
sinh & ® _ 1sin(2i€x/N)
E(cosm®P — cosh £ D) B 2 sin((m — &) /N) sin((m + i&)w/N)

dn(§) = (25)

Let us investigate the poles of w,, o(§) at the points —in, n € N. The equation (24)
contains the shift by i in w,, o(§). Therefore, if one is aware of the behavior of w,, o(§)
at 0 (and we are), then in order to decide how it behaves at —in, one needs to investigate
the poles and zeros of d,,(£). The following easily established statement collects the
necessary (and even a little bit redundant) information about those.

Lemma 1.

1. All poles and zeros of d,,(£) are located on the imaginary axis, and their location is
iN-periodic. In particular, one can study zeros and poles on the segment (0i, —Ni]
only.

2. All possible zeros of d,,(£) on (0i, —Ni] are located at the points & = —iN /2 and
& = —iN.

3. All possible poles of d,,(§) on (0i, —Ni] are located at the points & = —im and
& =—i(N —m).
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4. All points & € (0i, —N1i) except the ones listed above are regular with values

sinn®

até = —in.
n(cosm® — cosnd)
5. If N is even and m = 0, then d,,(£§) has a simple zero at § = —iN/2 and a simple
pole with the residue (—i/m) at £ = —iN. Other points & € (0i, —N1i) are regular
with values n~! cot(n/N) at § = —in for any n € (0, N),n # N/2.

6. If Nisevenand 0 < m < N/2, then d,,(§) has a simple zero at § = —iN/2
and simple poles at £ = —im and § = —i(N — m) with the residues (—i/m®) =
—iN/(2rm) and (—i/(N —m)®) = —iN/(2ra (N — m)), respectively.

7. If N is even and m = N /2, then d,,(§) has a simple zero at § = —iN and a simple
pole with the residue 2i/m at § = —iN /2.

8. If N is odd and m = 0, then d,,(£) has a simple pole with the residue (—i/m) at
& = —iN.

9. If Nisodd and 0 < m < [N/2], then d, (&) has simple poles at £ = —im and
& = —i(N — m) with the residues (—i/m®) = —iN/(2nm) and (—i/(N —m)P) =
—iN /(2 (N — m)) respectively and a simple zero at £ = —iN.

Let us now start drawing some conclusions from (24). The last term in the square
brackets in the right hand side of (24) is the Fourier transform of a compactly supported
function, and therefore is an entire function of £. Since we assumed that V,,(r, ¢) <
C/(1 + r?) and hence w,,(p) < Ce™"”, function w,, ;(§) is analytic in the complex
half-plane Im& < y. Thus, we can write (24) as

A
Wi,0(§) = Ed(é)fﬁm,o(é +1) +d(&) fo(§) + f1(8), (26)

where the function f,(§) is entire, and f}(£) is analytic in the half-plane Im& < y. The
assumed boundedness of the solution w,, and (14) for [ = 0 yield analyticity of W,, o(§)
in the half-plane Im& > —a, except a pole at the origin:

iUm’()

V2nE

where £ () is a function analytic for Im& > —«. Now equation (26), used repeatedly,
implies analyticity of W, o(§) in the whole plane except for the points & = —in, n =
0,1, 2, ..., where this function can have poles. These poles, as we have already pointed
out before, determine behavior of w,, (r) near the origin, which is our current object of
interest.

We will now address separately the cases of even and odd values of N.

Wi,o(§) =

+hi(¢), Imé&>—a, 27)
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3.2. Even N

We are interested in the possibility of the expansion (17)

. [
1 Um,n
Nir ; it A), (28)

and if it exists, in its coefficients. Let

wm,O(S) =

o
Wy o(—in +n) = Z S,Sf,)n% (29)
j=—00
be the Laurent expansion of w,, ¢(§) near the point —in. Assuming (17), we see that for
n < [ we must have S,g,’)n =0forj > 2and S,Sll)n = ivm,n/«/ﬂ. So, knowledge of (29)
would provide the needed information about (17).
Consider first the case when m = 0.
According to (27), the highest term in the Laurent expansion near O corresponds to
a simple pole:

ivo 0
S(l) — 9 (30)
00 am
Forn =1,..., N/2—1 function d(§) has no zeros or poles at the points § = —in,

so equation (26) jointly with the lemma tell that

Vo = S (]‘[ cot 9) V0.0- (31)
J

nl2n 2

When n reaches the value N /2, function d(£) has a simple zero, which according to
(26) means cancellation of the pole. Hence, w(£) is analytic at —iN /2 and S(g’l])v n=0.
Since according to the lemma d(§) does not have any poles for § = —in, n = N/2+1,
.., N — 1, we conclude that vy, = S(()’l,z =0forn € [N/2, N).
When n = N, function d (&) has a simple pole, which produces a new singularity

C
Sov = 7 (32)

where the value of the constant C can be found from (24). If C is not equal to zero, the
above calculation should be repeated again, and so on, since the trigonometric part of
the expression defining d (&) is periodic with period 2Ni.

Consider now the case when 0 < m < N/2.

When m # 0, continuity of the solution at the vertex together with condition (8)

imply that
P P
Um0 = Vm 0, 3 = Vm 0, —5 =0. (33)
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According to the lemma, this means then that forn = 0, ..., m — 1 there are no singu-
larities at § = —in, i.e., v, = S, = 0. When n = m, a simple pole can arise with a
residue S\)), = ivy,m/+/27. This pole then “propagates” while n < N /2:
=) . sin j @
vn = —— (] LA— (34)
(n — m)12n—m et cosm® — cos jP

When n becomes equal N /2, the singularity gets cancelled by a zero of d (&), and wy (&)
stays analytic for § = —in, n = N/2,..., N —m — 1. Atthe pointn = N —m a simple
pole is generated by the pole of d(£). It then survives forn = N —m, ..., N — 1, and
get canceled by a zero of d(§) atn = N.

Consider now the last case m = N/2.

As before, since m # 0, we have vy, 0 = 0. Hence, forn =0, ..., N/2 — 1 there
are no singularities at § = —in and thus vy, = S](\,I)Q’n = 0. When n = N/2, a simple

pole can arise with a residue vy, y2 = Sz(vl/)z, ~s2- This pole “propagates” till n = N,
where it gets cancelled by a zero of d ().

The above consideration shows that all singularities in the case of even N are at
most simple poles. Hence, w,, ¢(§) is a meromorphic function with simple poles at
& = —in, n = 0,1,2,..., with the residues S,(,}L. Since the fraction 1/(¢ + in)/
corresponds under the Fourier transform to the function

—if~/2npf‘1e"/’ <0
G = D! v PY (35)
0, p >0,

wy, (p) can be represented for p — —oo by the asymptotic series
o
Wi (0) ~ Y V€, (36)
n=0

where v, , = —iv 27 51511,),1’ and, according to (22),

[e¢]

V(7. @) ~ Y (@ €08 1@ + by sinng), (37)
n=0

where —®/2 < ¢ < ®/2, and coefficients a,, , and b,, , can be easily expressed in
terms of v,, ,. It is interesting to notice that a,, , = b, , = 0 for n < m:

o0

Vin(r, @) ~ Y " (am, COSNQ + by SN N). (38)

n=m
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It follows then from the jump condition (9), that the first term of the expansion (37) can
be written on each of N angular domains between the edges of the star structure as a

single function, i.e.,

Viu(r, @) = r" @y m €08 M@ + by, sinme) +o(r"), 0< ¢ < 27 (39)

3.3. Odd N

Consider first the case when m = 0. Like before, the highest term in the Laurent
expansion of W, ¢(&) near O corresponds to a simple pole:

ivo 0
s = —==. (40)
0,0 o
Forn =1,..., N — 1 we do not hit either zeros or poles of d(§), and hence the simple

pole survives at these points with the residue S(g_l; =1V ,/~ 27,

M=
on = _( ’2’)1 (Hcot —)Uoo (41)

When n = N, the pole of d(§) introduces a second order pole of W, o(§) with the
coefficient

21
2) (1)
Son = ﬁSO,N—l‘ 42)

Generally, coefficient S(g 18 not equal to zero; hence, the term S(()IJ)\, /(€ +1iN) can also
be present in the Laurent expansion of w,, ¢(§) near —iN.

For larger n this situation will repeat periodically with the period N, i.e., each time
when n = kN the order of the highest term will increase by one.

Consider now case 0 < m < [N/2].

As it has been already mentioned before, when m # 0, the coefficients v, ¢ are
equal to zero. Then, forn = 0, ..., m — 1 there are no singularities at £ = —in, i.e.,
U = S0 = 0. When n = m, a simple pole can arise with a residue S') . This pole
then propagates while n < N — m: '

_)L n—m n . .q)
Un.n = # 1_[ San . Um,m- (43)
' (n — m)12n—m et cosm® — cos jP '

When n becomes equal to N — m, we obtain a second order pole with

@ L
SON -m = _ﬁSO,N—m—l- (44)
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The residue at this point can be also nonzero. This second order pole then propagates
whilen < N:

n

1—[ —(A/2)sin j®

O _ @
j(cosm® — cos j®)’

0,n O,N—m

N—m<n<N. (45)
j=N-—-m+1

When n = N, the order of the highest term increases by one, and this goes on periodi-
cally with period N.

Formula (35) for the inverse Fourier transforms of poles 1/(£ + in)’ leads to the
following expansion for V,, (r, ¢):

L
Vi (r, @) = Z 1" (am,n COS N + by, sinng) + o(r'), (46)
where L,, = N —m — 1 form > 0and Lo = N — 1. Like for even N, the first m — 1
harmonics are absent in the expansion of V,,(r, ¢). The remainder of the expansion (46)
contains terms of the form r* log' (r) Jx.1(®). The minimal number of the terms that are
differentiable at the origin is equal to [N /2]; this occurs when m = [N /2].

3.4. Construction of the differential operators on graphs

The above consideration suggests the order of the differential operator (4) and
boundary conditions to be used to approximate the high-frequency asymptotics of the
Dirichlet-to-Neumann operator Ay on the graph X.

In order to pose boundary conditions for the differential operator A,;, we assume
that all nodes of the graph are symmetric junctions of N edges. In order to figure out
the boundary conditions at the symmetric junctions, we use relations (38) and (46) that
describe behavior of the Dirichlet-to-Neumann eigenmodes near the vertex of the N
point star structure.

As the above analysis shows, the number of differentiable terms in (38) and (46)
for which the coefficients can be determined from (26) (and hence from the spectral
problem for Ay) for all m such that |m| < [N/2] is limited by [N /2] for both even
and odd N. Hence, it seems unreasonable to try to impose conditions on derivatives of
order higher than [N /2], since some of the eigenmodes might not possess those. On the
other hand, expansions (38) and (46) for certain values of m contain terms with the first
[N /2] — 1 derivatives equal to zero at the origin. Therefore, conditions on at least [N /2]
first derivatives should probably be posed. Since these conditions have to be posed on
both ends of the graph edges, the order of the operator should be equal to 2[N /2], i.e.,
constant M in the definition (4) of the operator A,; should be equal [N /2]. This implies
in particular that while in the case of a triple junction (N = 3) one can try to use a second
order differential problem on X, for the square structure (N = 4) only the fourth order
ODEs should be employed. Although we will consider the case N = 4 in detail in a
forthcoming paper, we can mention that numerics does confirm that M = 1 is unsuitable
for N = 4, while M = 2 does work.
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We define boundary conditions at the nodes as follows. According to the expan-
sions (38) and (46) and condition (7), restriction u,, ;(r) of the eigenmode V,,(r, ¢) to
the jth edge is equal to

[N/2]
um,j(r) — wm(r)e—im<1>/2eijm<l> — eiijI> Z vm,nrn + O(}’[N/Z]). (47)

n=m

Hence, one expects the most general form of the solution of the differential equation at
the junction to be

[N/2] [N/2] ' [N/2]
wir)~ Y Cutty ()= Y Cu ™Y vy (48)
m=—[N/2] m=—[N/2] n=|m|

This together with our study of the coefficients v,,,, = —iv/27 S,Sll)n leads to some linear
relations among the derivatives vy) (0). Knowing these, one can attempt for particular
geometries to write down and study the corresponding spectral ODE problem on the
graph X. Since this becomes kind of technical, we will do it in a separate section below.

4. Examples of spectral calculations

In this section we will use the results of the considerations above in order to define
and study the appropriate spectral problem for an operator A,,. We will see, in particular,
that this problem must also contain the spectral parameter in the boundary conditions.
Then the resulting spectra will be compared with the pseudo-differential ones computed
numerically.

4.1. Structures with symmetric triple junctions

Consider a structure that has symmetric triple junctions only (i.e., at each vertex
three edges meet at the 120° angles). Then expansion (48) together with formulas (41)
and (43) yields the following boundary conditions at a junction:

.. A T ..
ui(ry = v_l’le_”q)r + vo,()(l - ri cot g) + vl,le”q)r + o(r). (49)
Describing arbitrary linear behavior along three edges requires six coefficients vy, , (m =
—1,0,1, n = 0, 1). However, the representation (49) contains three parameters only.
Thus, three linear conditions must be satisfied by the values u;(0) and u’j (0). It is not
hard to see that (49) is equivalent to the following vertex conditions:

u1(0) = u2(0) = u3(0),
3
Z %(O) =—A u10) cot z. (50)
dr 2 3

j=1
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Indeed, the first set of conditions implies that v; o = 0 for j # 0. The second means
that if one considers the function (du;/dr)(0) on the group Zs, its Fourier expansion
starts with the constant term equal to —vg (A /2) cot(sr/3). This is obviously equivalent
to (49). The r-derivatives above are computed in the direction from the node towards the
middle of the edge.

Let us specify this for certain geometries of X.

4.1.1. Honeycomb structure

In this section we calculate the spectrum of the differential problem (5) with bound-
ary conditions (50) for the honeycomb structure (figure 3).

The fundamental cell for this structure is shown in figure 4. Here L denotes the
length of each edge.

Since the whole structure is periodic, one needs to use the Floquet-Bloch theory
(see, for instance, [2,19,49,50,59] and impose cyclic conditions on the boundaries of the
cell with a quasimomentum k& = (k;, kp). This means that the vertical shift by V3L
results in multiplication of a function by e'*!, while the horizontal shift by 3L reduces to
multiplication by e'*2. This is reflected on figure 4, where it is shown that shift “North”
by the period is equivalent to multiplication by e'*! and shift “East” multiplies by e'*2.
In particular, only four vertices A, B, C, and D in the unit cell are required. Then
the resulting spectrum A;(k) as a function of k is the so called dispersion relation (or
dispersion curve, or band function). It is well known (see the quotes above) that the
spectrum in the whole plane coincides with the union over k of these spectra (i.e., with
the range of the band function).

Figure 4. The fundamental cell of the honeycomb structure.
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The whole problem on the honeycomb graph ¥ now reduces to the following sys-
tem on the union of six edges in the unit cell:

d A\°
@u(l) = — 5) u(l) on each edge,
u1(0) = uy(0) = u3(0) at each vertex,

3

du ; 3u, (0

Z ﬂ(0) =—A u10) cot i at each vertex, GD
= dr 2 3
u(x +3L,y) = eikzy(x, y),
u(x,y+~/3L) = e u(x, y),

where x is the horizontal and y is the vertical coordinate.
Surprisingly enough, the spectrum of (51) can be explicitly described.

Theorem 2. The dispersion curves (k) for (51) consist of the constant branches 1, =
2nrm/L, m € N, and of the graphs of the functions

2 T A 1

M(k) = —| mn + — % arcsin —+—cosk2:|:—\/(1+Cosk1)(1+cosk2) , (52)
L 3 4 6 6

where n € N. In particular, the spectrum of the ODE on the periodic graph X is the

union of segments [27wn/L, (47 /3 + 2an)/L] forn € N.

Proof.  There are six edges inside the unit cell. Solution of the second-order differential
equation in (51) on each edge can be represented as

AT A Ar
u;(r) = cy,jcos > + ¢, j8in 5 ) (53)

Hence, we have twelve unknown coefficients to determine and twelve equations given
by conditions (50) at each of the four nodes A, B, C, and D. Eight of these twelve
equations are continuity conditions, while the other four relate derivatives to the values
of the solution at the nodes.

Let us notice first the following interesting feature. When the value of the spec-
tral parameter A is equal to 27rn/L, n € N, one can choose all coefficients ¢; ; to
be equal to zero. Then the solution u;(r) = ¢, ; sin(Ar/2) vanishes at the nodes (i.e.,
u;(0) = u;(L) = 0). Therefore, all eight continuity conditions are satisfied. Since
now the function is equal to zero at the nodes, the other four conditions (50) are equiv-
alent to the sum of the derivatives at each node being equal to zero. These four linear
equations can always (for any quasimomentum k) be satisfied by choosing properly six
constants ¢, ;, some of which can be chosen not to equal zero. Hence, for A, = 2nn/L
the problem (51) has a nonzero solution for any quasimomentum k. This means that
these values of A are eigenvalues of the problem for any k. In terms of the dispersion
curves this means presence of flat branches on these levels. Their existence is known
to correspond to presence of the so called bound states (see, for instance, [2,49,50,59]),
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Figure 5. A compactly supported eigenfunction.

i.e., to existence of square-integrable eigenfunctions of the problem considered on the
infinite periodic graph. This is considered to normally be an impossibility for periodic
media [2,19,49,50,59]. However, as, in particular, our observation shows, differential
problems on periodic graphs, due to a nontrivial topology can possess bound states in
some resonant situations (see also [7,50,51]). In our case it is easy to even construct
compactly supported eigenfunctions corresponding to the above eigenvalues. Consider,
for example, the sinusoidal wave defined by the formula u; (r) = ¢, ; sin(2wr/L), where
|c2.;)] = 1 on one of the hexagonal loops of the honeycomb structures and equal to zero
on the rest of the infinite graph (figure 5).

This solution vanishes at the nodes of the graph and the sum of the derivatives at
each of the nodes is equal to zero. Existence of eigenvalues of differential operators on
periodic graphs seems to be a new spectral effect overlooked before in the context of
mesoscopic physics.

Let us now consider the bulk of the spectrum. If the spectral parameter X is not
equal to 2rm/L, constants ¢ ; and ¢, ; can be expressed (using (53) and continuity
condition at the nodes) in terms of the four node values u(A), u(B), u(C), and u(D)
(see figure 4). Conditions (50) for the derivatives at these nodes lead to the following
homogeneous system of equations:

Fu(A) + (" + 1)u(B) + e *1u(D) =0,
(e7® + 1)u(A) + f(Mu(B) + u(C) =0,

u(B) + f(Mu(C) + (e + 1)u(D) =0, 9
ef1u(A) + (e*2 + 1)u(C) + f(Mu(D) =0,
where f(A) = 23 sin(AL/2 — mr/3). The determinant of this system is equal to
fy ek 41 0 e ik
T4 1
e + f) | 0 55)
0 1 f) ek 41
elk 0 e +1  f)

= ') —2(gka) + 1) F2(1) + g*(ka) — 2g(ka) cos ki + 1, (56)
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Figure 6. The spectrum of the differential problem (51) on the honeycomb structure.

where g(k) = 2 4 2cos k. The system has a nontrivial solution iff its determinant is
equal to zero, which leads to

20 = glky) + 1 £ /g(k)g(kr). (57)

One can solve this equation for A and obtain analytic expression for the dispersion rela-
tion:

2 b4 . 1 1 1
M(k) = I mn + 3 =+ arcsin 7 + gcoskz + 6\/(1 + cosky)(1 4+ cosky) |. (58)

Analyzing (57), one can see that as the quasimomentum k varies over Brillouin zone
[0, 7] x [0, ], function f 2(1) covers the interval [0, 9], which is equivalent to the
spectral parameter A covering intervals [2rwn/L, (4w /3 4+ 2nn)/L]. Thus the union of
these intervals represents the spectrum of the problem. This finishes the proof of the
theorem. [

The spectrum is shown in figure 6 along with the dispersion relations for L =
1/4/3 = 0.5773.



282 P. Kuchment, L. Kunyansky / Differential operators and photonic crystals

187 /0.577

167 /0.577

147 /0.57T

125 /0.577

107 /0577

87 /0577

6w /0.577

lx [0.577

27 0577

L e e L._ . L._ S I I

07 /0577

1 X M r

Figure 7. The spectrum of the operator Ay, on the honeycomb structure.

It is interesting to compare this spectrum with the dispersion curves and the spec-
trum of the pseudodifferential operator Ay computed numerically by the method of [51]
(shown in figure 7).

The two spectra are practically identical starting with the second spectral band (and
very close for the first one). This amazing agreement shows validity of our heuristic
approach.

We would like to mention the following interesting feature of these two graphs that
in spite of their similarity sets them apart. Both of them appear to show the phenomenon
of flat bands at the levels A, = 2wm/L. One can notice, however, that the lower of these
bands in the pseudo-differential case look not exactly constant. This is not an accident.
Although in the differential case, as we have shown, these bands are exactly flat, and
hence correspond to actual bound states, we have conjectured before [50,51] that the
spectrum of Ay is absolutely continuous, so in the pseudo-differential case these bands
are not exactly constant. This conjecture was proven in [8]. This means that in the case
of Ay one deals with strong resonances rather than actual bound states.
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4.1.2. Quasi-octagonal structure

In this section we will compute the spectrum of the following quasi-octagonal
structure shown in figure 8.

The graph X consists of straight edges and arcs of the same length L. Like the
previous structure, this one contains only symmetric triple junctions. If all the edges of
octagons and squares were straight, the junctions would not be symmetric, so the sides of
the “squares” have been made curved in order to preserve the symmetry of the junction.
This explains the name we gave to this geometry.

We construct again the ODE spectral problem on X as follows:

d A\°
@u(l) = —(5) u(l) on each edge,

u1(0) = u(0) = u3(0) at each vertex, (59)
3

dl/tj 3M1 (O) T
Z —0) = - cot — at each vertex.
dr 2 3

j=1

The spectrum and dispersion curves for this problem can be studied explicitly.

Theorem 3. The dispersion curves for (59) consist of the flat branches A,, = 27m/L,
m € N and of the branches given by the equation

FH) — 6£2(0) +4f (M) (cosky + cosky) + 1 — 4cosk; cosky = 0, (60)

where f (L) = 2+/3sin(AL/2 — 7/3). In particular, the spectrum of (59) is the union of
the segments (2/L)[rm, tm + %n], m € N.

Proof. Like for the honeycomb structure, modulo the lattice of periods, there are six
edges inside each unit cell. We impose, as before, the Floquet-Bloch cyclic condi-
tions on the boundary of the cell with certain quasimomentum k = (ki, k»). Solution
of the second-order differential equation (5) on each edge can be represented by the
formula (53). Hence, we have twelve unknown coefficients to determine and twelve
equations given by conditions (50) at each of the four nodes A, B, C, and D. Eight of
these twelve equations are continuity conditions, while the other four relate derivatives
to the values of the solution at the nodes.

Figure 8. Quasi-octagonal structure.
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Exactly like we did this for the honeycomb structure, we establish the presence of
the flat branches A, = 2wrm /L. So, one observes bound states again.

If A is not equal to 2rm /L, constants ¢y j;, ¢» j in (53) can be expressed using the
values at the four nodes. The four conditions on derivatives at the nodes lead to the
following homogeneous system of equations:

FRu(A) +u(B) +u(C)e™* +u(D) =0,

u(A) + f(Mu(B) +u(C) +u(D)e * =0, 61)
u(A)e® +u(B) + f(Mu(C) + u(D)e ‘*k2=k) = 0,

u(A) + e 1u(B) + ee2=ky(C) + fF(Mu(D) =0,

where as for the honeycomb geometry before f(A) = 2+/3sin(AL/2 — /3). The
determinant of this system is
f 1 e k2 1
1 f) 1 e ik
eik2 1 f) e itka—k1)
1 eik1 ei(kz—kl) f()\)
= f*() — 6f%(L) +4f(A)(cosk, + cosky) + 1 —4cosk;cosky.  (63)

(62)

The determinant is equal to zero iff the values of the polynomial (in f)

1
y=Z(f4—6f2+1) (64)
and of the linear function Y}
y = cos kj cosk, — f(cosky + cos kp) (65)

coincide at this particular value of f. One can readily check that for k € [0, 7] X
[0, ] the set of lines Y; covers the shaded domain in figure 9, and the graph of the

Figure 9. The graph of y = (1/4)(]’4 - 6f2 + 1) and the area covered by the set of lines Y.
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polynomial belongs to this domain, touching its boundary at the points (—1, —1), (0, 1),
and (1, —1), until it escapes to infinity crossing the lines y =1 + 2 f.

Hence, solution exists for any f between these “escape” intersections of the graph
of y = 3(f*— 6%+ 1) with the lines y = 1 +2f and y = 1 — 2. These lines
correspond to the cases k; = k, = m and k; = k; = 0 respectively. In these cases the
equation for f

f4—6f2+4f(cosk1+cosk2)+1—4cosklcosk2:0 (66)

has the sets of roots {3, —1, —1, —1} and {—3, 1, 1, 1}, correspondingly. Therefore, the
escape values of f are £3, and hence the spectrum covers intervals defined by the con-
dition —3 < f(A) <3 orAL/2 € [nk, mk + %n]. This finishes the proof. O

Figure 10 demonstrates the spectrum of the differential problem for L = 0.418
along with the numerically computed dispersion relations.

This spectrum closely approximates the numerically computed spectrum of the
pseudodifferential operator Ay (figure 11):

127 /0418

107 /0418

870418

Gx /0418

1% /0.11%

—

07 /0,418
I X M I

Figure 10. The spectrum of the differential problem on the quasi-octagonal structure.
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Figure 11. Disperison relations and the spectrum for Ay, on the quasi-octagonal structure.

Our remark (made with the reference to the honeycomb structure) concerning
the difference between presence of bound states (differential problem) and resonances
(pseudo-differential problem) and related to the result of [8], applies here too.

5. Final remarks and conclusions

In this paper we presented a partly rigorous, partly heuristic procedure for ap-
proximating spectra of pseudo-differential operators on graphs that arise in the photonic
crystal theory by spectra of much simpler differential problems. The main advantage of
considering differential problems is that their spectra are easy to study. In simplest cases
it can be done analytically. In contrast, study of the original pseudo-differential problem
and of spectra of photonic crystals in general requires not very simple numerics (see, for
instance, [6,18,26]) and usually does not submit easily to analytic investigation.

Spectra of the constructed differential problems show an amazingly good agree-
ment with the spectra of the original pseudodifferential problems. In the smooth case,
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i.e., when vertices are absent, the corresponding result was rigorously proven in our pre-
vious work [51] (see also [7,50] for surveys). Although the numeric evidence suggests
strongly that approach works in a more general case considered here, it is not clear yet
how to carry over our rigorous justification of the spectral approximation [51] from the
smooth case to the case of a graph.

Due to space limitations, only the case of symmetric triple junction was considered
in detail. We plan to address the quadruple junctions and free ends (square structures,
crosses, etc.) elsewhere, where we will also consider some other spectral effects.
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