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Abstract
Magneto-acousto-electric tomography (MAET), also known as the Lorentz
force or Hall effect tomography, is a novel hybrid modality designed to be a
high-resolution alternative to the unstable electrical impedance tomography.
In this paper, we analyze the existing mathematical models of this method,
and propose a general procedure for solving the inverse problem associated
with the MAET. It consists in applying to the data one of the algorithms of
thermo-acoustic tomography, followed by solving the Neumann problem for
the Laplace equation and the Poisson equation. For the particular case when the
region of interest is a cube, we present an explicit series solution resulting in a
fast reconstruction algorithm. As we show, both analytically and numerically,
the MAET is a stable technique yielding high-resolution images even in the
presence of significant noise in the data.

Introduction

Magneto-acousto-electric tomography (MAET) is based on the measurements of the electrical
potential arising when an acoustic wave propagates through a conductive medium placed
in a constant magnetic field [26, 34]. The interaction of the mechanical motion of the free
charges (ions and/or electrons) with the magnetic field results in the Lorentz force that causes
separation of charges and, thus, generates Lorentz currents within the tissue. The goal of MAET
coincides with that of electrical impedance tomography (EIT): to reconstruct the conductivity
of the tissue from the values of the electric potential measured on the boundary of the object.
The EIT is a fast, inexpensive and harmless modality, which is potentially very valuable
due to the large contrast in conductivity between healthy and cancerous tissues [5, 6, 9].
Unfortunately, the reconstruction problems arising in EIT are known to be exponentially
unstable.

MAET is one of the several recently introduced hybrid imaging techniques designed to
stabilize the reconstruction of electrical properties of tissues by coupling together ultrasound
waves with other physical phenomena. Perhaps the best known examples of hybrid methods
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are thermo-acoustic tomography (TAT) [16] and the closely related photo-acoustic modality
[15, 29]. In the latter methods, the amount of electromagnetic energy absorbed by the medium
is reconstructed from measurements (on the surface of the object) of acoustic waves caused
by thermo-acoustic expansion (see, e.g., [17, 33]). Another hybrid technique, designed to
overcome the instability of EIT is acousto-electric impedance tomography (AEIT) [36]. It
couples acoustic waves and electrical currents, through the electro-acoustic effect (see [25]).
Although AEIT has been shown, both theoretically and in numerical simulations, to be stable
and capable of yielding high-resolution images [3, 8, 18, 19], the feasibility of practical
reconstructions is still in question due to the weakness of the acousto-electric effect.

In this paper, we analyze MAET, a modality designed to stably reconstruct the conductivity
by combining the magnetic field, acoustic excitation and electric measurements, coupled
through the Lorentz force. The physical foundations of MAET were established in [26] and
[34]. It was shown in [26] that if a tissue with conductivity σ (x) moves with velocity V (x, t)
within the constant magnetic field B, the arising Lorentz force will generate the Lorentz
currents JL(x, t) given by the following formula:

JL(x, t) = σ (x)B × V (x, t). (1)

Originally, it was proposed to utilize a focused propagating acoustic pulse to induce the
electrical response [26, 34]. In [13], wave packets of a certain frequency were used in a physical
experiment to reconstruct the current density in a thin slab of a tissue. Similarly, in [4], the
use of a perfectly focused acoustic beam was assumed in a theoretical study and in numerical
simulations. However, in the above-quoted works, an accurate mathematical model(s) of such
beams was not presented. Moreover, the feasibility of focusing a fixed-frequency acoustic
beam at an arbitrary point inside the 3D body is problematic. In a theoretical study [30], the
use of plane waves of varying frequencies was proposed instead of beams. This is a more
realistic approach; however, the analysis in that work relies on several crude approximations
(the conductivity is assumed to be close to 1, and the electric field is approximated by one
term in the multipole expansion).

To summarize, the existing mathematical models of measurements in the MAET are of
an approximate nature; moreover, some of them contradict others. For example, it was found
in [13] that if one uses a pair of electrodes to measure the voltage (difference of the potentials)
at two points a and b on the boundary of the body, the result is the integral of the mixed
product of three vectors: velocity V , magnetic induction B and the so-called lead current Jab

(the current that would flow in the body if the difference of potentials was applied at points a
and b). The approximate model in [30] implicitly agrees with this conclusion. However, in [4],
it is assumed that if the pulse is focused at point x, the measurements will be proportional to
the product of the electric potential u(x) and conductivity σ (x). This assumption contradicts
the previous models; it also seems to be unrealistic since the potential u(x) is defined up to an
arbitrary constant, while the measurements are completely determined by the physics of the
problem.

In this paper, we first derive, starting from equation (1), a rigorous and general model of
the MAET measurements. Next, we show that if a sufficient number of data are measured,
one can reconstruct, almost explicitly and in a stable fashion, the conductivity of the tissue.
For general domains, the reconstruction can be reduced to the solution of the inverse problem
of TAT followed by the solution of the Neumann problem for the Laplace equation and a
Poisson equation. In the simpler case of a rectangular domain, the reconstruction formulas can
be made completely explicit and the solution is obtained by summing several Fourier series.
In the latter case, the algorithm is fast, i.e. it runs in O(n3 log n) floating-point operations on
an n × n × n grid. The results of numerical simulations show that high-resolution images of
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the conductivity can be stably recovered from MAET measurements even in the presence of
significant noise.

1. Formulation of the problem

Suppose that the object of interest whose conductivity σ (x) that we would like to recover is
supported within an open and bounded region � with the boundary ∂�. For simplicity, we
will assume that σ (x) is smooth in �, does not approach 0 and equals 1 in the vicinity of
∂�; the support of σ (x) − 1 lies in some �1 ⊂ � and the distance between �1 and ∂� is
nonzero. The object is placed in the magnetic field with a constant magnetic induction B and
an acoustic wave generated by a source lying outside � propagates through the object with the
velocity V (x, t). The Lorentz force induces currents JL(x, t) in � given by equation (1). We
assume that the electrical interactions occur on a much faster timescale than the mechanical
ones, and so all currents and electric potentials depend on t only as a parameter. In addition
to the Lorentz currents, the arising electrical potential u(x, t) generates the secondary, Ohmic
currents JO(x, t) given by Ohm’s law

JO(x, t) = σ (x)∇u(x, t).

Since there are no sinks or sources of charges in �, the total current is divergence free

∇ · (JL + JO) = 0.

Thus,

∇ · σ∇u = −∇ · (σB × V ). (2)

Since there are no currents through the boundary, the normal component of the total current
JL(x, t) + JO(x, t) vanishes:

∂

∂n
u(z) = −(B × V (z)) · n(z), z ∈ ∂�, (3)

where n(z) is the exterior normal to ∂� at point z.
We will assume that the boundary values of the potential u(z, t) can be measured at all

points z lying on ∂�. We will model the measurements by integrating u(z, t) with a weight
I(z), thus forming the measuring functional M defined by the formula

M(t) =
∫

∂�

I(z)u(z, t) dA(z), (4)

where A(z) is the standard area element. The weight I(z) can be a function or a distribution,
subject to the only restriction that its integral over ∂� equals zero. In particular, if one chooses
to use I(z) = δ(z − a) − δ(z − b), where δ(·) is the 2D Dirac delta function, then M models
the two-point measuring scheme utilized in [13] and [30].

In order to understand what kind of information is encoded in the values of M(t), let us
consider the solution wI(x) of the following divergence equation:

∇ · σ∇wI(x) = 0, (5)

∂

∂n
wI(z) = I(z), z ∈ ∂�. (6)

(To ensure the uniqueness, we will require that the integral of wI(z) over � vanishes.) Then,
wI(x) equals the electric potential that would be induced in the tissue by injecting currents
I (z) through ∂�. Let us denote the corresponding currents σ∇wI(x) by JI (x):

JI (x) = σ∇wI(x). (7)

3



Inverse Problems 28 (2012) 035002 L Kunyansky

Let us now apply the second Green’s identity to the functions u(x, t), wI(x) and σ (x):∫
�

[wI∇ · (σ∇u) − u∇ · (σ∇wI )] dx =
∫

∂�

σ

[
wI

∂

∂n
u − u

∂

∂n
wI

]
dA(z). (8)

By taking into account (3), (2), (5) and (6), equation (8) can be simplified to

−
∫

�

wI∇ · (σB × V ) dx =
∫

∂�

σwI
∂

∂n
u dA(z) − M(t). (9)

By integrating the left-hand side of (9) by parts and by replacing ∂
∂n u with (3), one obtains∫

�

σ∇wI · (B × V ) dx −
∫

∂�

wIσ (B × V ) · n dA(z) = −
∫

∂�

σwI(B × V ) · n dA(z) − M(t),

M(t) = −
∫

�

σ∇wI · (B × V ) dx = −
∫

�

JI · (B × V ) dx = B ·
∫

�

JI (x) × V (x, t) dx. (10)

(Equation (1) in [13] is the particular case of (9) for I(z) = δ(z − a) − δ(z − b).)
It is clear from equation (10) that MAET measurements recover some information about

currents JI (x). Let us assume that the speed of sound c and the density ρ of the tissues are
approximately constant (as in breast imaging, one of the most important potential applications).
Then, the acoustic pressure p(x, t) satisfies the wave equation in �:

1

c2

∂2

∂t2
p(x, t) = �p(x, t). (11)

Additionally, p(x, t) is the time derivative of the velocity potential ϕ(x, t) (see, for example,
[10]) so that

V (x, t) = 1

ρ
∇ϕ(x, t),

p(x, t) = ∂

∂t
ϕ(x, t).

(12)

(The velocity potential ϕ(x, t) also satisfies the wave equation (11).)
Now, by taking into account (12), equation (10) can be re-written as

M(t) = 1

ρ
B ·

∫
�

JI(x) × ∇ϕ(x, t) dx.

Furthermore, by noting that ∇ × (ϕJI ) = −JI × ∇ϕ + ϕ∇ × JI , we obtain

M(t) = 1

ρ
B ·

[
−

∫
�

∇ × (ϕJI ) dx +
∫

�

ϕ(x, t)∇ × JI (x) dx

]

= 1

ρ
B ·

[∫
∂�

ϕ(z, t)JI (z) × n(z) dA(z) +
∫

�

ϕ(x, t)∇ × JI (x) dx

]
. (13)

In some situations, the above equations can be further simplified. For example, if at some
moment of time t, the velocity potential ϕ(x, t) vanishes on the boundary ∂�, then the surface
integral in (13) also vanishes:

M(t) = 1

ρ
B ·

∫
�

ϕ(x, t)∇ × JI (x) dx. (14)

Similarly, if the boundary ∂� is located far away from the support of inhomogeneity of σ (x),
the surface integral in (13) can be neglected and we again obtain equation (14).

Equation (13) is our mathematical model of the MAET measurements. Our goal is
to reconstruct from the data M(t) the conductivity σ (x)—by varying B, ϕ(x, t) and I(z).
Our strategy for solving this problem is outlined in the following sections. However, some
conclusions can be reached just by looking at equation (13). For example, one can note that
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if three sets of measurements are conducted with magnetic induction pointing, respectively,
in the directions of canonical basis vectors e1, e2 and e3, one can easily reconstruct the sum
of integrals in the brackets in (13). Furthermore, if one focuses ϕ(x, t) so that at the moment
t = 0, it becomes the Dirac δ-function centered at y, i.e.

ϕ(x, 0) = δ(x − y),

then one immediately obtains the value of ∇ × JI at point y (such a focusing is theoretically
possible as explained in the next section). Thus, by moving the focusing point through the
object, one can reconstruct the curl of JI in all of �.

Our model also explains the observation reported in [13] that no signal is obtained when
the acoustic wave packet is passing through the regions of constant σ (x). In such regions, the
current field JI is irrotational, and therefore, the integral in (14) vanishes.

Finally, it becomes clear that an accurate image reconstruction is impossible if
monochromatic acoustic waves of only a single frequency k are used for scanning, no matter
how well they are focused. In this case, the spatial component ψ of ϕ(x, t) = ψ(x) exp(ikt)
is a solution of the Helmholtz equation:

�ψ + k2ψ = 0

and can be approximated in � by the plane waves eiλ·x with |λ| = k. Let us assume for
simplicity that the electrical boundary is removed to infinity. Then, measuring data M(t) given
by (14) is equivalent to collecting values of the Fourier transform of ∇ × JI (x) corresponding
to the wave vectors λ lying on the sphere |λ| = k in the Fourier domain. All the other spatial
frequencies cannot be recovered.

2. Reconstructing the curls of currents

The first step toward solving the inverse problem of MAET is the reconstruction of the curls of
currents JI (x) corresponding to certain choices of I(z). Let us assume that all the measurements
are repeated three times, with the magnetic induction B pointing, respectively, in the directions
of canonical basis vectors e1, e2 and e3. Then, as mentioned above, if ϕ(x, 0) = δ(x − y), one
readily recovers from the data M(0) the curl of the current at y, i.e. ∇ × JI (y). Generating
such a velocity potential is possible at least theoretically. For example, if one simultaneously
propagates plane waves ϕλ(x, t) = exp(iλ · x − i|λ|t) with all possible wave vectors λ, the
combined velocity potential at the moment t = 0 will add up to the Dirac delta function
δ(x). Such an arrangement is rather impractical. First, the sources of sound would have to
be removed far from the object to produce a good approximation to plane waves within the
object. Second, they would have to completely surround the object. Finally, all the sources
would have to be synchronized. A variation of this approach is to place small point-like sources
in the vicinity of the object. Then, instead of plane waves, propagating spherical fronts (or
monochromatic waves) would be generated. These types of waves can also be focused into a
delta function (a discussion of such focusing can be found in [19]).

2.1. Synthetic focusing

However, a more practical approach is to utilize some realistic measuring configuration (e.g.
one consisting of one or several small sources scanning the boundary sequentially), and then
to synthesize algorithmically from the realistic data the desired measurements that correspond
to the delta-like velocity potential. Such a synthetic focusing was first introduced in the
context of hybrid methods in [18, 19, 24]. It was shown, in applications to AET and to the
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acoustically modulated optical tomography, that synthetic focusing is equivalent to solving the
inverse problem of TAT. The latter problem has been studied extensively and a wide variety of
methods is known by now (see reviews [17, 33] and references therein). The same technique
can be applied to the MAET as explained below.

2.1.1. Measuring functionals solve the wave equation. Consider a propagating spherical
front originated at point y. If the initial conditions on py(x, t) are⎧⎨

⎩
py(x, 0) = δ(x − y),

∂

∂t
py(x, 0) = 0,

then py(x, t) can be represented in the whole of R
3 by means of the Kirchhoff formula [32]

py(x, t) = ∂

∂t

δ(|x − y| − ct)

4π |x − y| .

Such a front can be generated by a small transducer placed at y and excited by a delta-like
electric pulse; such devices are common in ultrasonic imaging.

The velocity potential ϕ(x, y, t) corresponding to py(x, t) then equals

ϕ(x, y, t) = δ(|x − y| − ct)

4π |x − y| . (15)

The role of variables x and y is clearly interchangeable; ϕ(x, y, t) is the retarded Green’s
function of the wave equation [32] either in x and t, or in y and t. Moreover, consider the
following convolution H(y, t) of a finitely supported smooth function h(y) with ϕ

H(y, t) =
∫

R3
h(y)

δ(|x − y| − ct)

4π |x − y| dx.

Then, H(y, t) is the solution of the following initial value problem (IVP) in R
3 [32]:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

c2

∂2

∂t2
H(y, t) = �yH(y, t),

H(y, 0) = 0,

∂

∂t
H(y, 0) = h(y).

(16)

Now suppose that a set of MAET measurements is obtained with propagating wave
fronts ϕ(x, y, t) with different centers y (while I(z) and B are kept fixed). By substituting (15)
into (13), we find that, for each y, the corresponding measuring functional MI,B(y, t) can be
represented as the sum of two terms:

MI,B(y, t) = Msing
I,B (y, t) + Mreg

I,B(y, t),

where

Msing
I,B (y, t) = 1

ρ

∫
∂�

δ(|z − y| − ct)

4π |z − y| B · JI (z) × n(z) dA(z), (17)

Mreg
I,B(y, t) = 1

ρ

∫
�

δ(|x − y| − ct)

4π |x − y| B · ∇ × JI (x) dx. (18)

It is clear from the above discussion that both terms Msing
I,B (y, t) and Mreg

I,B(y, t) solve the wave
equation in R

3, subject to the initial conditions

∂

∂t
Msing

I,B (x, 0) = 1

ρ
B · JI (x) × n(x)δ∂�(x), (19)
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∂

∂t
Mreg

I,B(x, 0) = 1

ρ
B · ∇ × JI(x), (20)

Msing
I,B (y, 0) = Mreg

I,B(y, 0) = 0, (21)

where δ∂�(x) is the delta function supported on ∂�. While the singular term Msing
I,B (y, t) solves

the wave equation in the sense of distributions, the regular term Mreg
I,B(y, t) represents a classical

solution of the wave equation.

Proposition 1. Suppose the conductivity σ (x) and boundary currents I(z) are the C∞ functions
of their arguments and the boundary ∂� is infinitely smooth. Then, the regular part Mreg

I,B(y, t)
of the measuring functional is a C∞ solution of the wave equation

1

c2

∂2

∂t2
Mreg

I,B(y, t) = �yMreg
I,B(y, t), y ∈ R

3, t ∈ [0,∞), (22)

satisfying initial conditions (20) and (21).

Proof. Under the above conditions, the potential wI(x) solving the boundary value problem
(5), (6) is a C∞ function in � due to the classical estimates on the smoothness of solutions of
elliptic equations with smooth coefficients [12]. The curl of JI vanishes outside of �1 since
σ (x) is constant in �\�1. Therefore, the right-hand side of (20) can be extended by zero to
a C∞ function in R

3. The term Mreg
I,B(y, t) defined by equation (18) solves wave equation (22)

(due to the Kirchhoff formula [32]) subject to infinitely smooth initial conditions (20) and
(21), and thus, it is a C∞ function for all y ∈ R

3, t ∈ [0,∞). �

2.1.2. Reconstructing the initial conditions. We would like to reconstruct the right-hand
side of (20) (and possibly that of (19)) from the measured values of MI,B(y, t). Since c is
assumed constant, in the 3D case, MI,B(y, t) will vanish (due to the Huygens principle) for
t > tmax = Dmax/c, where Dmax is the maximal distance between the points of � and the
acoustic sources. We will assume that MI,B(y, t) is measured for all t ∈ [0, tmax].

The problem of reconstructing ∂
∂t MI,B(x, 0) from MI,B(y, t) is equivalent to that of

reconstructing the initial value h(y) from the solution of IVP (16). The latter, a more general
problem, has been studied extensively in the context of TAT (see e.g. [17, 33] and references
therein). In the case of TAT, points y describe the location of detectors rather than sources,
but the rest of the mathematics remains the same. The most-studied situation is when the
detectors are placed on a closed surface � surrounding the object. If � is a sphere, a variety
of inversion techniques is known, including (but not limited to) the explicit inversion formulas
[11, 20, 28], series techniques [21, 23, 27, 35], time reversal by means of finite differences
[2, 7, 14], etc. If � is a surface of a cube, one can use the inversion formula [22], the already-
mentioned time-reversal methods or the fast algorithm developed in [21] for such surfaces.

The choice of the TAT inversion method for the application in the MAET will depend, in
particular, on the mutual location of the electric boundary ∂� and the acoustic source surface
�. One can decide to move the electric boundary further away by placing the object in a
liquid with conductivity equal to 1 and by submerging the acoustic sources into the liquid, in
which case � will be inside ∂�. Alternatively, one can move the acoustic surface further away
so that it surrounds the electric boundary. Finally, one may choose to conduct the electrical
measurements on the surface of the body and to place the acoustic sources on the same surface,
in which case � will coincide with ∂�.

If ∂� lies inside �, all the above-mentioned TAT inversion techniques (theoretically) will
reconstruct both ∂

∂t Msing
I,B (y, 0) and ∂

∂t Mreg
I,B(y, 0). In practice, accurate numerical reconstruction
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of the singular term ∂
∂t Msing

I,B (y, 0) supported on ∂� may be difficult to obtain due to the finite
resolution of any realistic measurement system. Luckily, the support �1 of ∂

∂t Mreg
I,B(y, 0) is

spatially separated from ∂�, so that the contributions from the singular term can be eliminated
just by setting the reconstructed image to zero outside �1 . As explained further in this paper,
∂
∂t Mreg

I,B(y, 0) contains enough information to reconstruct the conductivity. On the other hand,
∂
∂t Msing

I,B (y, 0) does carry some useful information, which can be recovered by a specialized
reconstruction algorithm.

If � lies inside ∂� (but �1 still lies inside �), not all TAT reconstruction techniques can
be applied. Most of the inversion formulas will produce an incorrect result in the presence of
exterior sources (such as the term ∂

∂t Msing
I,B (y, 0) supported on ∂� and exterior with respect to

the region enclosed by �). On the other hand, formula [22], series methods [1,21] and all the
time-reversal techniques automatically filter out the exterior sources and, thus, can be used to
reconstruct ∂

∂t Mreg
I,B(y, 0).

The situation is more complicated if surfaces � and ∂� coincide. However, those methods
that are insensitive to sources located outside ∂� are also insensitive to the sources located
on ∂�, particularly to those represented by ∂

∂t Msing
I,B (y, 0). These methods can be used to

reconstruct ∂
∂t Mreg

I,B(y, 0). In other words, the following proposition holds.

Proposition 2. If values of the measuring functional MI,B(y, t) are known for all y ∈ � and
t ∈ [0, Dmax/c], the term ∂

∂t Mreg
I,B(y, 0) can be exactly reconstructed in �1 (by using one of the

above-mentioned TAT algorithms). Moreover, if the conditions of proposition 1 are satisfied,
the reconstruction is exact pointwise.

In order to reconstruct the curl of the current JI (x), we need to repeat the procedure
of finding ∂

∂t Mreg
I,B(x, 0) three times, with three different orientations of B : B( j) = |B|e j,

j = 1, 2, 3. As a result, we find the projections of ∇ × JI (x) on all e j’s and thus obtain

∇ × JI (x) = ρ

|B|
3∑

j=1

e j
∂

∂t
Mreg

I,B( j) (x, 0), x ∈ �1. (23)

(outside �1, the curl of JI(x) equals 0 since σ (x) is constant in �\�1).
If, in addition, ∂� lies inside � and ∂

∂t Msing
I,B (y, 0) has been recovered, we also obtain

JI (x) × n(x)δ∂�(x) = ρ

|B|
3∑

j=1

e j
∂

∂t
Msing

I,B( j) (x, 0). (24)

3. Reconstructing currents from the curls

The considerations of the previous section show how to recover from the values of the
measuring functionals MI,B( j) (y, t), the curl of JI and, in some situations, the surface term (24).
The next step is to reconstruct the current JI .

We know that JI satisfies the following boundary conditions:

JI · n|∂� = ∂

∂n
wI

∣∣∣∣
∂�

= I. (25)

In certain simple domains, one can find a way to solve the equation

C = ∇ × JI

for JI in such a way that conditions (25) are satisfied automatically. One such domain is a
cube; we present the corresponding algorithm in section 5. In general, however, a solution of
an auxiliary Neumann problem may be needed as discussed below.
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Let us start with the most general situation and assume that only the curl C = ∇ × JI has
been reconstructed. Since the current JI is a purely solenoidal field whose curl vanishes on
∂�, there exists a vector potential K(x), such that

JI (x) = ∇ × K(x) + 
(x), x ∈ �, (26)

where K(x) has the form

K(x) =
∫

�

C(y)

4π |x − y| dy,

and 
(x) is both a solenoidal and a potential field within �. Then, there exists a harmonic
potential ψ(x), such that 
(x) = ∇ψ(x). Therefore, by combining equations (26) and (25),
one obtains (

n · (∇ × K) (z) + ∂

∂n
ψ(z)

)∣∣∣∣
∂�

= I(z),

and ψ(z) now can be recovered by solving the Neumann problem⎧⎨
⎩

�ψ(x) = 0, x ∈ �

∂

∂n
ψ(z) = I(z) − n ·

(
∇ ×

∫
�

C(y)

4π |z − y| dy

)
, z ∈ ∂�.

(27)

Now, JI (x) is uniquely defined by the formula

JI (x) = ∇ ×
∫

�

C(y)

4π |x − y|dy + ∇ψ(x), x ∈ �. (28)

Proposition 3. Under the smoothness assumptions of proposition 1, current JI (x) is given by
(28), where the function ψ(x) is the (classical) solution of the Neumann problem (27).

If, in addition to the curl ∇×JI (x), the surface term (equation (24)) has been reconstructed,
there is no need to solve the Neumann problem. Instead, the function 
(x) is given explicitly
by the following formula [31]:


(x) = ∇x ×
∫

∂�

JI(y) × n(y)

4π |x − y| dA(y).

The final expression for current JI can now be written as

JI (x) = ∇x ×
[∫

�

C(y)

4π |x − y|dy +
∫

∂�

JI (y) × n(y)

4π |x − y| dA(y)

]

= ∇x ×
∫

�̄

C(y) + JI (y) × n(y)δ∂�(y)

4π |x − y| dy, x ∈ �, (29)

where �̄ is the closure �. The term with the delta function in the numerator of (29) coincides
with the surface term (24). In order to avoid the direct numerical reconstruction of the singular
term, one may want to try to modify the utilized TAT reconstruction algorithm so as to recover
directly the convolution with 1

4π |x| contained in equation (29). The practicality of such an
approach requires further investigation.

4. Reconstructing conductivity from the currents

In order to reconstruct σ (x), we utilize three currents J(k), k = 1, 2, 3, corresponding
to different boundary conditions Ik. We also use three different magnetic inductions B( j),
j = 1, 2, 3, and, as a result, obtain the values of the following measuring functionals:

MIk,B( j) (y, t) =
∫

∂�

Ik(z)u( j)(z, t) dA(z), j = 1, 2, 3, k = 1, 2, 3, (30)

9
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where u( j)(z, t) is the electric potential corresponding to the acoustic wave with the velocity
potential ϕ(x, z, t) propagating through the body in the presence of constant magnetic field B( j).
The increase in the number of currents J(k) does not require additional physical measurements:
the same measured boundary values of u( j)(z, t) are used to compute different functionals by
changing the integration weight Ik(z) in (4).

For each of the currents J(k), we apply one of the above-mentioned TAT reconstruction
techniques to compute ∂

∂t MIk,B( j) (y, 0). The knowledge of the latter functions for B( j),
j = 1, 2, 3, allows us to recover the curls C(k) = ∇ × J(k), k = 1, 2, 3, (equation (23))
and, possibly, the surface terms (24). Finally, currents J(k) are reconstructed by one of the
methods described in the previous section.

At the first sight, finding σ (x) from the knowledge of J(k) = σ∇wIk , k = 1, 2, 3, is
a nonlinear problem, since the unknown electric potentials wIk depend on σ (x). However,
as shown below, this problem can be solved explicitly without linearization or some other
approximation. Indeed, for any k = 1, 2, 3, the following formula holds:

0 = ∇ × J(k)

σ
=

(
∇ 1

σ

)
× J(k) + 1

σ
C(k) = − 1

σ 2
(∇σ ) × J(k) + 1

σ
C(k)

so that

∇ ln σ (x) × J(k)(x) = C(k)(x), x ∈ �, k = 1, 2, 3. (31)

Now, one can try to find ∇ ln σ at each point in � by solving the (in general) over-determined
system of linear equations (31).

Let us assume first, that at each point x in �, the currents J(l)(x), l = 1, 2, 3, form a basis
in R

3. There are nine equations in system (31), whose unknowns are the three components of
∇ ln σ , but the rank of the corresponding matrix does not exceed 6. In order to see this, let
us multiply each equation of (31) by J(l), l = 1, 2, 3. (Since currents J(l) form a basis, this is
equivalent to a multiplication by a non-singular matrix.) We obtain⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇ ln σ · (J(1) × J(2)) = C(1) · J(2)

∇ ln σ · (J(1) × J(2)) = −C(2) · J(1)

∇ ln σ · (J(1) × J(3)) = C(1) · J(3)

∇ ln σ · (J(1) × J(3)) = −C(3) · J(1)

∇ ln σ · (J(2) × J(3)) = C(2) · J(3)

∇ ln σ · (J(2) × J(3)) = −C(3) · J(2).

In the absence of noise, the right-hand sides of equations (2), (4) and (6) in the above system
would coincide with those of equations (1), (3) and (5), respectively, and therefore, three
equations could be dropped from the system. However, in order to reduce the noise sensitivity
of the method, we average the equations with identical left-hand sides (this is equivalent to
finding the least-squares solution of this system). We thus obtain⎧⎪⎨

⎪⎩
∇ ln σ · (J(1) × J(2)) = R1, R1 = 1

2 (C(1) · J(2) − C(2) · J(1)),

∇ ln σ · (J(1) × J(3)) = R2, R2 = 1
2 (C(1) · J(3) − C(3) · J(1)),

∇ ln σ · (J(2) × J(3)) = R3, R3 = 1
2 (C(2) · J(3) − C(3) · J(2)).

(32)

As shown in the appendix, the solution of (32) can be written explicitly as follows:

∇ ln σ = 1

J(1) · (J(2) × J(3))
AR, (33)

where R = (R3,−R2, R1)
T and A is a 3×3 matrix whose columns are the Cartesian coordinates

of the currents J(1), J(2) and J(3), respectively. Since, by assumption, currents J(l) form a basis
at each point of �, the denominator in (33) never vanishes, and thus, equation (33) can be
used to reconstruct ∇ ln σ in all of �.

10
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Finally, we compute the divergence of both sides in (33):

� ln σ = ∇ · AR
J(1) · (J(2) × J(3))

(34)

and solve the Poisson equation (34) for ln σ in � subject to the Dirichlet boundary conditions

ln σ |∂� = 0. (35)

The above reconstruction procedure works if currents J(k)(x), k = 1, 2, 3, are linearly
independent at each x ∈ �. In general, this cannot be guaranteed. There exists a counterexample
[8] with such a conductivity and a boundary condition that the corresponding current vanishes
at a point within the domain. Such a situation, however, is unlikely to occur for a realistic σ (x)

and our method should still be useful.
Moreover, the condition of three currents forming a basis at each x ∈ � can be relaxed.

Let us show that if one of the currents (say J(3)) vanishes at some x and the two other currents
are not parallel in x, the following system is still uniquely solvable:{∇ ln σ × J(1) = C(1),

∇ ln σ × J(2) = C(2).
(36)

Indeed, let us multiply via the dot product the above equations by J(2) and J(1), respectively,
and subtract them. We obtain

∇ ln σ · (J(1) × J(2)) = 1
2 (C(1) · J(2) − C(2) · J(1)). (37)

Now, multiply the first equation in (36) by J(1) × J(2). The left-hand side yields

(∇ ln σ × J(1)) · (J(1) × J(2)) = ∇ ln σ · [J(1) × (J(1) × J(2))]

= ∇ ln σ · [(J(1) · J(2))J(1) − (J(1) · J(1))J(2)],

which leads to the equation

∇ ln σ · [(J(1) · J(2))J(1) − (J(1) · J(1))J(2)] = C(1) · (J(1) × J(2)). (38)

Similarly, by multiplying the second equation in (36) by (J(2) × J(1)), we obtain

∇ ln σ · [(J(1) · J(2))J(2) − (J(2) · J(2))J(1)] = C(2) · (J(2) × J(1)). (39)

Equations (37)–(39) form a linear system with three equations and three unknowns. This
system is solvable since the vectors given in the bracketed expressions in (38) and (39) are not
parallel. Indeed, the cross product of these terms yields

[· · ·] × [· · ·] = (J(1) × J(2))[(J(1) · J(2))2 − (J(1) · J(1))(J(2) · J(2))].

The above expression is clearly nonzero if J(1) and J(2) are not parallel, and therefore, the
system of the three equations (37), (38) and (39) is uniquely solvable in this case.

Theorem 4. Suppose that the conditions of proposition 1 are satisfied and that the conductivity
σ (x) and boundary currents Ik, k = 1, 2, 3, are such that at each point x ∈ �, two of the
three correspondent currents J(k) are non-parallel. Then, the logarithm of the conductivity ln σ

is uniquely determined by the values of the measuring functionals MIk,B( j) (y, t), k = 1, 2, 3,

j = 1, 2, 3, y ∈ � and t ∈ [0, Dmax/c].

Proof. By propositions 1–4, from the values of MIk,B( j) (y, t), one can reconstruct currents
J(k)(x), k = 1, 2, 3, at each x ∈ �. Since at each x, at least two of the three currents (let us
call them J(1) and J(2)) are not parallel, the system of the three equations (37), (38) and (39)
is uniquely solvable, and ∇ ln σ can be found at each x ∈ �. Since σ is bounded away from
zero, ∇ ln σ is a C∞ function in �. By computing the divergence of ∇ ln σ , the problem of

11
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finding ln σ reduces to solving the Poisson problem with zero Dirichlet boundary conditions
in a smooth domain �. �

The condition that out of the three currents two are nonzero and not parallel is less
restrictive than the requirement that the three currents are linearly independent. To the best
of our knowledge, there exists no counterexample showing that the former condition can be
violated, i.e. one of the three currents generated by linearly independent boundary conditions
vanishes and the other two are parallel at some point in space. On the other hand, we know of
no proof that this cannot happen.

5. The case of a rectangular domain

In the previous sections, we presented a theoretical scheme for finding the currents J(k),
k = 1, 2, 3, and conductivity σ (x) from the MAET measurements in a rather general setting,
where the electrical domain � and surface � supporting the acoustic sources were quite
arbitrary. This scheme consists in solving the inverse problem of TAT in the domain surrounded
by �, the Neumann problem for the Laplace equation in � and the Poisson equation for ln σ ,
also in �. All these problems are well studied and algorithms for their solution are well known.
However, in the case when � is a cube and � coincides with ∂�, the reconstruction can be
obtained in the form of an explicit series solution.

5.1. Fast reconstruction algorithm

Let us assume that the domain � is a cube [0, 1] × [0, 1] × [0, 1] and the sound sources are
located on ∂�. (In practice, such a configuration will occur if the object is placed in a cubic
tank filled with conductive liquid, with the sources of sound and electrodes placed on the tank
walls.) We will use three boundary conditions Ik defined by the formulas

Ik(x) =

⎧⎪⎨
⎪⎩

1
2 , x ∈ ∂�, xk = 1

− 1
2 , x ∈ ∂�, xk = 0

0, x ∈ ∂�, 0 < xk < 1.

, k = 1, 2, 3, x = (x1, x2, x3). (40)

As before, all the measurements are repeated with three different directions of the magnetic
field B( j) = |B|e j, j = 1, 2, 3, and functionals MIk,B( j) (y, t) (see equation (30)) are computed
from the values of the electrical potentials u( j)(x, t) on ∂�, for t ∈ [

0,
√

3
c

]
.

We start the reconstruction by applying to MIk,B( j) (y, t) the fast cubic-domain TAT
algorithm [21] to recover the regular terms ∂

∂t Mreg
I(k),B( j) (x, 0), j = 1, 2, 3, k = 1, 2, 3. (The

algorithm we chose automatically sets to zero the sources corresponding to the surface terms
∂
∂t Msing

I(k),B( j) (x, 0) supported on �.) This is done for all three directions of B( j) so that we
immediately obtain the curls C(k)(x) = ∇ × J(k)(x), k = 1, 2, 3, x ∈ ∂�.

Now, since the currents are divergence free,

∇ × C(k)(x) = ∇ × ∇ × J(k)(x) = −�J(k)(x).

The above equations are a set of Poisson problems for the components of J(k) in �. Below, we
discuss how to enforce the correct boundary conditions for these problems.

Let us recall that

J(k)(x) = σ∇w(k)(x),

12
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where w(k) is the corresponding electric potential. It is convenient to subtract the linear
component from potentials, i.e. to introduce w(k),0(x) and J(k),0(x) defined as follows:

w(k)(x) = w(k),0(x) + xk,

J(k)(x) = J(k),0(x) + ek, k = 1, 2, 3.

Now, each w(k),0 satisfies zero Neumann conditions on ∂� and thus can be extended by even
reflections to a periodic function in R

3. Since w(k),0 is a harmonic function near ∂�, such
an extension will be a harmonic function in the neighborhood of ∂�. Therefore, each w(k),0

can be expanded in the Fourier cosine series in �, and the derivatives of this series yield
correct behavior of the so-computed ∇w(k),0 and J(k),0 on ∂�. (J(k),0 coincide with ∇w(k),0

in the vicinity of ∂�.) Therefore, the components of currents J(k),0 should be expanded in the
Fourier series whose basis functions are the corresponding derivatives of the cosine series. In
other words, the following series yield correct boundary conditions when used as a basis for
expanding the currents J(k),0, k = 1, 2, 3:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J(k),0
1 (x) =

∞∑
l=1

∞∑
m=0

∞∑
n=0

A(k),1
l,m,n sin π lx1 cos πmx2 cos πnx3

J(k),0
2 (x) =

∞∑
l=0

∞∑
m=1

∞∑
n=0

A(k),2
l,m,n cos π lx1 sin πmx2 cos πnx3

J(k),0
3 (x) =

∞∑
l=0

∞∑
m=0

∞∑
n=1

A(k),3
l,m,n sin π lx1 cos πmx2 cos πnx3,

(41)

where J(k),0(x) = (
J(k),0

1 (x), J(k),0
2 (x), J(k),0

3 (x)
)
. Now, since ∇ × J(k),0(x) = ∇ × J(k)(x),

�J(k),0(x) = −∇ × C(k)(x), k = 1, 2, 3, (42)

and if the Poisson problems (42) are solved for each component of J(k),0 using sine/cosine
Fourier series (41), the correct boundary conditions will be attained. The computation is fast
if the fast Fourier sine and cosine transforms (FFST and FFCT) are utilized.

Note that before the Poisson problems (42) can be solved, the curl of C(k) needs to be
computed. This is done by expanding C(k) in the Fourier sine series and by differentiating the
series, again using the FFST and FFCT. In other words, we numerically differentiate data that
may contain noise. However, this does not give rise to instabilities, since this differentiation is
immediately followed by an inverse Laplacian (describing the solution of the Poisson problem)
so that the combined operator is actually smoothing.

Finally, once the currents are reconstructed, we form the right-hand side of the system
(34) and solve this Poisson problem for ln σ (x) by using the Fourier sine series that yields
the desired boundary conditions (35). Again, the FFST and FFCT are utilized here and in the
computations of the divergence needed to form equation (34).

All the steps of the present algorithm are explicit and can be performed fast using the
FFST and FFCT. The same is true for the TAT reconstruction technique [21] used in the first
step so that the required number of floating-point operations (flops) for the whole method is
O(n3 ln n) for a Cartesian computational grid with n3 nodes.

5.2. Numerical results

We demonstrate the work of the cubic-domain reconstruction algorithm on simulated data.
For the most thorough simulation, we would need to solve equation (2) with the boundary
conditions (3) for various propagating fronts V (x, t) centered at different locations on ∂�.
The number of the modeled data points would need to be similar to the number of unknowns.

13
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(b)(a)

Figure 1. A 3D simulation with a smooth phantom representing ln σ (x). (a) The cross section of
the phantom by the plane x3 = 0.5. (b) Reconstruction from the data with added 50% (in L2 sense)
noise.

For a fine grid (say of the size 257 × 257 × 257), we would have to solve equation (2) several
million times. This task is too challenging computationally.

Instead, for a given phantom and for the set of functions I(k) given by (40), we computed
currents J(k) by solving equation (5) with boundary conditions (6). Next, the wave equation
(16) with the initial condition h(y) = B( j) · ∇ × J(k)(x) was solved for j = 1, 2, 3, k = 1, 2, 3;
the solution of this equation at points in ∂� simulated the regular part ρMreg

I,B(x, t) of the
measuring functionals. For simplicity, we did not model the singular term Msing

I,B (x, t) given by
(17). Theoretically, when the TAT reconstruction algorithm [21] is applied to such data, this
term (not supported in �) will not contribute to the reconstruction and simulating it will not
bring additional insight.

As the first phantom simulating ln σ (x), we used the following linear combinations of
four C8 radially symmetric functions ϕ(x − x(i)):

f (x) = ϕ(|x − x(1)|) − ϕ(|x − x(2)|) − ϕ(|x − x(3)|) + ϕ(|x − x(4)|), (43)

where ϕ(t) is a decreasing non-negative trigonometric polynomial on [0, r0], such that
ϕ(0) = 0.5, ϕ(t) = 0 for t � r0 and the first eight derivatives of ϕ vanish at 0 and at r0; and
centers x(i) were lying in the plane x3 = 0: x(1) = (0.25, 0.25, 0), x(2) = (0.25, 0.75, 0),

x(3) = (0.75, 0.25, 0), x(4) = (0.75, 0.75, 0). The radius r0 was equal to 0.34 in this
simulation. A grayscale picture of this phantom is shown in figure 1(a). Figure 1(b)
demonstrates the cross section by the plane x3 = 0.5 of the image reconstructed on a
129 × 129 × 129 computational grid from simulated data with added noise. The acoustic
sources were located at the nodes of 129 × 129 Cartesian grids on each of the six faces of the
cubic domain �. For each source, 223 values of each measuring functional were computed,
representing 223 different time samples (or 223 radii) of the propagating acoustic front.

The measurement noise was simulated by adding values of a uniformly distributed random
variable to the data. The noise was scaled in such a way that for each time series (one source
position), the noise intensity in L2 norm was 50% of the intensity of the signal (i.e. of the L2

norm of the data sequence representing the measuring functional). In spite of such a high level
of noise in the data, the reconstruction shown in figure 1(b) contains very little noise. This can
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Figure 2. The cross section of the reconstructed image (shown in figure 1) by the line x1 = 0.25,
x3 = 0.5. The thick black line represents the phantom and the gray line corresponds to the
reconstructed image.

Figure 3. Plot of one of the simulated measuring functionals for one of the detector positions (see
the text for details): thick black line represents accurate values and gray line represents the data
with added 50% noise.

also be verified by looking at the plot of the cross section of the latter image along the line
x2 = 0.25 presented in figure 2.

In order to understand the origins of such unusually low sensitivity to noise, we plot in
figure 3 a profile of one of the time series MI1,B(3) (y, t) for point y = (1, 0.5, 0.5). The thick
black line represents the accurate measurements and the gray line represents the data with
the added noise. In figure 4, we plot a profile of the reconstructed curl C(1)(x) (gray line)
against the correct values (black line). (This plot corresponds to the cross section of the third
component of C(1) along the line x2 = 0.5, x3 = 0.5.) The latter figure shows that the noise is
amplified during the first step (inversion of the spherical mean Radon transform). This is to be
expected since the corresponding inverse problem is mildly ill posed (similar to the classical
inverse Radon transform). However, in the second step, corresponding to solving the problem
(34), the noise is significantly reduced. This is not surprising since the corresponding operator
is a smoothing one. As a result, we obtain the low-noise image shown in figure 1(b).

For the second simulation, we used a phantom of ln σ modeled by a linear combination of
slightly smoothed characteristic functions of balls of different radii. The balls were centered
on the pairwise intersections of planes x1 = 0.25, x2 = 0.25, and x3 = 0.25 (figure 5).
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Figure 4. Profile of the reconstructed curl (gray line) compared to the accurate values (thick black
line). The values of the third component of C(1) along the line x2 = 0.5, x3 = 0.5 are shown.

Figure 5. The second (almost) piecewise constant 3D phantom. The cross sections by the planes
x j = 0.25, j = 1, 2, 3 are shown.

The minimum value of ln σ in this phantom is 0 (black color) and the maximum value is 1
(white color). The simulated data corresponded to the acoustic sources located at the nodes of
257 × 257 Cartesian grids on each of the six faces of the cubic domain �. For each source, time
series of 447 values for each measuring functional were simulated. The noise was modeled
by adding to each time series a random sequence scaled so that the L2 norm of the noise was
equal to that of the signal.

In figure 6, we shot the graph of MI1,B(3) (y, t) for the point y = (1, 0.5, 0.5). The black
line represents the accurate data; the gray line represents the data with added noise.

The reconstruction was performed on a 257 × 257 × 257 grid. The cross sections of the
reconstructed image by the planes x1 = 0.25 and x2 = 0.25 are shown in figures 7(b) and
(d), next to the corresponding images of the phantom (i.e. shown in figures 7(a) and (c)). The
cross-sectional profile of the image shown in figure 7(d), corresponding to the line x1 = 0.25,
x3 = 0.25, is plotted in figure 8.
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Figure 6. Plot of the values of one of the simulated measurement functionals for one of the
detector positions (see the text for details): thick black line represents accurate values and gray line
represents the data with added 100% noise.

(b)(a)

(d)(c)

Figure 7. Simulation in 3D with phantom shown in figure 5. (a) and (c) The cross sections of the
phantom by the planes x2 = 0.25 and x1 = 0.25, respectively. (b) and (d) The corresponding cross
sections of the reconstruction from the data with added 100% (in L2 sense) noise.
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Figure 8. The cross section of the reconstructed image by the line x1 = 0.25, x3 = 0.25. The thick
black line represents the phantom and the gray line corresponds to the image reconstructed from
the data with added 100% (in L2 sense) noise.

As before, we obtained a very accurate reconstruction with little noise. This is again the
result of the smoothing, occurring when the Poisson problem is solved in the last step of the
algorithm. Additionally, the image benefits from the singular nature of the phantom. While
the noise is more or less uniformly distributed over the volume of the cubic domain, the signal
(the nonzero ln σ ) is supported in a rather small fraction of the volume, thus increasing the
visual contrast between the noise and the signal.

We have also conducted a third numerical experiment with the same phantom and the
same discretization grid as in the second simulation. This time we reconstructed only two
curls C(1) and C(2) and, further, computed only currents J(1) and J(2). Instead of using formula
(33) at each point of the discretization grid, we solved equations (37)–(39) to obtain ∇ ln σ.

The rest of the algorithm was the same: compute ∇ · ∇ ln σ and solve the Poisson equation
for ln σ. The result of the reconstruction was practically indistinguishable from the one shown
in figures 7(b) and (d). While the level of noise in the image was slightly higher than in the
previous simulation with three currents, it still was remarkably low.

Final remarks and conclusions

Mathematical model

In section 1, we presented a mathematical model of MAET measurements. In general, it
agrees with the models [13, 30]. However, instead of pointwise electrical measurements, we
consider a more general scheme. The advantage of such an approach is generality and ease of
analysis and numerical modeling. It contains as a particular case the pointwise measurement
of electrical potentials (as in [13, 30]).

Another novel element in our model is the use of velocity potentials. It simplifies analysis
and leads to a better understanding of the problem at hand. We discussed in detail the case
of acoustic signal presented by propagating acoustic fronts from small sources. However, the
same mathematics can be used to model time-harmonic sources. Since the problem is linear
with respect to the velocity potential, the connection between the two problems is through
the direct and inverse Fourier transforms of the data in time. Finally, plane wave irradiation
(considered, for example, in [30]) is a partial case of irradiation by time-harmonic sources,
when they are located far away from the object.
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General reconstruction scheme

In sections 2–4, we presented a general scheme for solving the inverse problem of MAET
under the assumption of propagating spherical acoustic fronts. (A slight modification of this
scheme would allow one to utilize time-harmonic sources and plane waves instead of the fronts
we used.) The scheme consists of the following steps.

(i) Apply one of the suitable TAT reconstruction techniques to the measuring functionals
MI(k),B( j) (y, t), j, k = 1, 2, 3, to reconstruct the regular terms ∂

∂t Mreg
I(k),B( j) (x, 0) and, thus,

to obtain the curls of J(k).

(ii) Compute currents J(k) from their curls (this step may require one to solve the Neumann
problem for the Laplace equation).

(iii) Find ∇ ln σ at each point in � using formula (33) or by solving the system of equations
(37)–(39).

(iv) Find the values of � ln σ by computing the divergence of ∇ ln σ and compute ln σ by
solving the Poisson problem with the zero Dirichlet boundary conditions.

Theoretical properties and numerical methods for all the four steps are well known. The
first step is mildly ill posed (similar to the inversion of the classical Radon transform), the
second and third steps are stable and the fourth step is described by a smoothing operator.
Our rather informal discussion suggests that the total reconstruction procedure is stable (it
does not exhibit even the mild instability present in classical computer tomography), and our
numerical experiments confirm this assertion. We leave a rigorous proof of this conjecture for
future work.

Comparison with AEIT

Similar to AET, MAET overcomes the instability of EIT by combining electrical measurements
with ultrasound modulation. However, MAET has some advantages. First, the arising inverse
problem is linear and can be solved explicitly. Second, AEIT yields a very weak signal;
successful acquisition of AET data in a realistic configuration has not been reported so far.
The signal in MAET is stronger and first reconstructions from real data have already been
obtained [13].

The case of a rectangular domain

In section 5, we presented a completely explicit set of formulas that yield a series solution
of the MAET problem for the case of the cubic domain. It reduces the problem to a set of
sine and cosine Fourier transforms and thus can be easily implemented using FFTs. This, in
turn, results in a fast algorithm that requires O(n3 ln n) floating-point operations to complete
a reconstruction on a Cartesian grid with n3 nodes.

Feasibility of reconstruction using two directions of B

It is theoretically possible to shorten the potentially long acquisition time by reducing the
number of different directions of B. If only two orthogonal directions of the magnetic field B
are used, only two components of a curl C = ∇ × JI will be reconstructed on the first step of
our method (say C1 and C2). However, since div curl J = 0,

∂

∂x3
C3 = − ∂

∂x1
C1 − ∂

∂x2
C2.
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Since C vanishes on ∂�, the above equation can be integrated in x3, and thus, C3 can be
reconstructed from C1 and C2. A further study is needed to see how much this procedure
would affect the stability of the whole method.
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Appendix.

Consider the following system of linear equations:⎧⎨
⎩

x · (a × b) = R1

x · (a × c) = R2

x · (b × c) = R3,

(A.1)

where a = (a1, a2, a3)
T , b = (b1, b2, b3)

T and c = (c1, c2, c3)
T are given linearly independent

vectors in R
3, x = (x1, x2, x3)

T is the vector of unknowns and R1, R2 and R3 are given numbers.
Equations (A.1) can be re-written in the following form:

R1 =
∣∣∣∣∣∣
a1 b1 x1

a2 b2 x2

a3 b3 x3

∣∣∣∣∣∣ , R2 = −
∣∣∣∣∣∣
a1 x1 c1

a2 x2 c2

a3 x3 c3

∣∣∣∣∣∣ , R3 =
∣∣∣∣∣∣
x1 b1 c1

x2 b2 c2

x3 b3 c3

∣∣∣∣∣∣
or

v1 = 1

det A

∣∣∣∣∣∣
a1 b1 x1

a2 b2 x2

a3 b3 x3

∣∣∣∣∣∣ , v2 = 1

det A

∣∣∣∣∣∣
a1 x1 c1

a2 x2 c2

a3 x3 c3

∣∣∣∣∣∣ , v3 = 1

det A

∣∣∣∣∣∣
x1 b1 c1

x2 b2 c2

x3 b3 c3

∣∣∣∣∣∣ , (A.2)

where A is a matrix whose columns are vectors a, b and c; v j = Rj (−1) j+1

det A , j = 1, 2, 3. Introduce
vectors R = (R3,−R2, R1)

T and v = (v1, v2, v3)
T . Then, formulas (A.2) can be viewed as the

solution of the system of equations Av = x obtained using Cramer’s rule. Therefore, solution
of (A.1) is given by the formula

x = Av = 1

det A
AR = 1

a · (b × c)
AR.
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