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Abstract

®
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We present a novel two-dimensional (2D) MAET scanner, with a rotating object
of interest and two fixed pairs of electrodes. Such an acquisition scheme, with
our novel reconstruction techniques, recovers the boundaries of the regions
of constant conductivity uniformly well, regardless of their orientation. We
also present a general image reconstruction algorithm for the 2D MAET
in a circular chamber with point-like electrodes immersed into the saline
surrounding the object. An alternative linearized reconstruction procedure is
developed, suitable for recovering the material interfaces (boundaries) when a
non-ideal piezoelectric transducer is used for acoustic excitation. The work of
the scanner and the linearized reconstruction algorithm is demonstrated using
several phantoms made of high-contrast materials and a biological sample.

Keywords: Lorentz force tomography, magneto-acousto-electric tomography,
electric impedance tomography, imaging of conductivity, lead currents,

synthetic transducer

(Some figures may appear in colour only in the online journal)

1. Introduction

Magneto-acousto-electric tomography (MAET), also known as the Lorentz force impedance
tomography, is based on measurements of the electrical potential arising when an acoustic
wave propagates through conductive medium placed in a magnetic field (Wen et al 1998,
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Montalibet et al 2001). The Lorentz force resulting from the motion of free ions (and/or
electrons) in the magnetic field causes separation of charges and, thus, generates Lorentz
currents within the tissues. The values of electric potential associated with these currents are
measured outside of the object of interest and used to reconstruct the conductivity map within
the tissues.

MAET can be viewed as an attempt to significantly improve the resolution of the better
known Electrical Impedance Tomography (EIT), that was introduced in the late 1980s as a
fast, inexpensive, and safe method for mapping the distribution of electrical conductivity in
biological tissue. In EIT, surface potentials are detected while injecting small levels of cur-
rent through parts of the body (Barber and Brown 1984, Cheney et al 1999, Borcea 2002). A
variety of medical conditions, including cancer, blood clots, and seizures, are associated with
large changes in bioimpedance (see Borcea 2002 and references therein). However, despite
extensive development, EIT has not become a widely used technique in medical imaging due
to its poor spatial resolution. EIT is based on solving an ill-posed (or unstable) inverse prob-
lem, which makes impossible obtaining high resolution images. In contrast, the stability of
the inverse problem of MAET is restored by coupling electrical measurements to ultrasound
waves through the Lorentz force effect. This yields high-resolution spatial information about
the object, and, as a result, makes MAET a potentially irreplaceable imaging modality.

Few experimental results on MAET have been obtained by now. As a form of biomedical
imaging, this technique was first introduced in Wen et al (1998), under the name of Hall Effect
Imaging. By scanning the transducer in the plane perpendicular to its axis, the authors of Wen
et al (1998) were able to image the interfaces between the regions of different conductivi-
ties, parallel (or nearly parallel) to the scanning plane. In Montalibet ef al (2001), accurate
measurements of the Lorentz force effect within a narrow measuring chamber were performed
using time-harmonic ultrasound waves; image reconstruction was not attempted in that work.
An image of a planar face of a simple test object was obtained in Haider et al (2008), again,
using planar scanning parallel to that face. In Grasland-Mongrain et al (2013), reconstructed
images of a gelatin phantom and of a beef sample are presented. These images were also
obtained using planar scanning; material interfaces parallel to the scanning plane and nearly
perpendicular to the axis of the transducer are clearly visible in the images. In all of the above
works, only one pair of electrodes was used, and the orientation of the transducer was station-
ary. This made reconstruction of the interfaces not perpendicular to the transducer axis dif-
ficult if not impossible. In the present work the scanned object is rotated with respect to the
transducer, and two pairs of electrodes are used, thus permitting uniformly accurate detection
of material interfaces.

In addition to MAET, there exist several other hybrid modalities utilizing various combina-
tions of magnetic field with ultrasound, such as, for example, magneto-acoustic tomography
with magnetic induction (MAT-MI) (Mariappan and He 2003, Xu and He 2005, Li ef al 2007,
Hu et al 2011), Lorentz force electrical impedance tomography using magnetic field (Zengin
and Genger 2016), and some others. Like MAET, all these modalities are very new; they sig-
nificantly differ from the present version of MAET by the physics of the signal acquisition.
For these two reasons we will not attempt here a comparative analysis of these modalities and
MAET.

Like almost any other type of tomography, MAET relies on mathematical processing of
the data in order to recover the desired image. One of the first rigorous image reconstruction
techniques for MAET has been proposed in Roth and Schalte (2009), under assumptions that
the conductivity distribution o(x) is a small perturbation of a constant, and that the object is
tested by planar time-harmonic waves of all possible frequencies and orientations. An implicit
assumption in this work was that the electric potential was measured by a pair of electrodes
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located perpendicularly to the propagation direction of the plane wave. The technique was
tested in a numerical experiment.

A significantly more general 3-dimensional (3D) setup was considered in Kunyansky
(2012). It was assumed that at least 3 different pairs of electrodes were used (although a signif-
icant freedom was retained in modeling various electrode configurations). The magnetic field
for simplicity was assumed uniform, with ability to utilize at least two perpendicular orienta-
tions of the magnetic induction. Importantly, it was assumed that the ultrasound illumination
was done using an ideal transducer, capable of transmitting acoustic waves of all frequencies,
and the scanning was done using all wave directions. It has been shown in Kunyansky (2012)
that, if such a rich set of data is available, the conductivity can be reconstructed theoretically
exactly, using a set of explicit and linear formulas, without any linearization with respect to
small parameters or other simplifying assumptions. Such a linearity is quite surprising, since
the original problem of EIT is nonlinear, and since many other hybrid modalities lead to non-
linear inverse problems even when the coupling between the component fields is very weak.
In addition, all the steps of the reconstruction procedure presented in Kunyansky (2012) are
stable. These techniques were tested in Kunyansky (2012) in numerical experiments with
simulated noisy data, confirming the theoretical conclusions of the paper.

A 2-dimensional (2D) reconstruction procedure was developed in Ammari et al (2015) for
a MAET data acquisition scheme somewhat similar to the experimental setup of Grasland-
Mongrain et al (2013). As in the latter work, only one pair of wide flat electrodes was con-
sidered in Ammari et al (2015), i.e. smaller amount of measured information is assumed,
comparing to Kunyansky (2012). However, similarly to Kunyansky (2012), the assumption
was made that the transducer could generate all frequencies and illuminate the object from
all the directions within the plane where the object was supported. (Since the experimental
setup of Grasland-Mongrain et al (2013) does not deliver multi-directional ultrasound excita-
tion, methods of Ammari ef a/ (2015) cannot be combined directly with the data of Grasland-
Mongrain et al (2013).) Since in Ammari et al (2015) only one pair of electrodes was assumed,
an explicit reconstruction technique (similar to Kunyansky (2012)) could not be applied, and
a more sophisticated minimization procedure was developed. It has been shown theoretically
that this procedure converges to the sought conductivity; the corresponding algorithm was
validated in numerical simulations.

The reconstruction techniques of Kunyansky (2012) and Ammari er al (2015) share the
first step consisting of reconstruction of the curl(s) of the so-called lead (or virtual) current(s)
associated with each electrode pair. This step is done using any of the well known methods
developed for photo- and thermoacoustic tomography (see, e.g. Kuchment and Kunyansky
(2011a) and references therein). In order for the rest of the MAET mathematics work properly,
the results of the first step should be quantitatively correct. However, in all of the recent exper-
imental works on MAET, ultrasound waves were generated using piezoelectric transducers.
Such transducers are popular in the biomedical imaging community due to their high efficiency
and ability to work as both transmitters and receivers of acoustic signals. However, a signifi-
cant drawback of these devices from the MAET point of view is their narrow bandwidth. A
frequency response of a typical transducer can be modeled by a bell-shaped curve centered at
a certain frequency (e.g. 0.5 MHz as in several of the above mentioned experimental works),
quickly falling off away from that frequency. In other words, such transducers cannot gener-
ate a significant range of lower frequency waves (say, 0 to 0.25 MHz). The application of the
linear methods of thermoacoustic tomography to such data with missing lower frequencies,
is equivalent to applying a high-pass (spatial) filter to the reconstructed function. While in
some other hybrid modalities (e.g. photoacoustic tomography) such high-pass images are still
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useful, a quantitatively correct image needed for the multi-step MAET reconstruction proce-
dures (Ammari ef al 2015, Kunyansky 2012) cannot be obtained this way.

In our opinion, MAET will be able to yield quantitatively correct, high-resolution images
of conductivity if wide-band acoustic sources are used, and a sufficiently rich 3D set of data
is collected. However, before an advanced 3D MAET scanner can be built, the feasibility of
MAET needs to be demonstrated in lower-budget experiments utilizing conventional piezo-
electric transducers and other readily available measuring devices. In particular, the goal of
the present work is to build a prototype 2D MAET scanner and to develop theoretical and
algorithmic tools for image reconstruction from the MAET data. We will show that even using
a relatively simple experimental MAET scheme one can reconstruct boundaries between the
regions of contrasting conductivity uniformly well, independently of their orientation. The
work of the scanner will be demonstrated using tissue-mimicking phantoms and a bovine
sample.

In the present paper we concentrate on the engineering aspect of MAET and limit the pres-
entation of the underlying mathematics to the main results that are needed to understand the
design and work of our scanner. A more rigorous study of the mathematical side of this work
can be found in the companion paper (Kunyansky et al 2017).

2. A prototype 2D MAET scanner

To this end, the authors have built the first 2D fully-tomographic prototype MAET scanner,
and tested it on several simple test objects. The purpose of this work is to show that even in
a minimal configuration MAET can recover boundaries of bodies with different conductivi-
ties, with the resolution close to the wavelength corresponding to the central frequency of the
transducer.

2.1. General scheme of the experiment

The main part of our scanner is a cylindrical scanning chamber placed between two cylindrical
neodymium permanent magnets, situated coaxially above and below the chamber, and creat-
ing a near vertical magnetic induction. The chamber is filled with a saline (NaCl) solution and
the object of interest is placed inside the chamber and completely submerged into the saline.
An ultrasound transducer (whose axis is horizontal) sends short pulses into the object through
a side window in the chamber. The horizontal cross-section of the chamber and the top view
of the data acquisition setup are shown in figure 1.

The interaction of the magnetic field with horizontal motion of the charged particles gener-
ates Lorentz currents oriented horizontally. The secondary Ohmic currents propagate through
the object and the conductive saline. Two pairs of electrodes placed in the saline near the
chamber’s walls pick up differential values of the resulting electric potential. The electrodes
are made of vertical copper wires, and the boundaries of the test object(s) were also made
vertical when possible. This results in Ohmic currents propagating mostly horizontally, and
allows us to use a simplified 2D mathematical model to accurately model our experimental
data and to pose the 2D inverse problem.

In order to obtain a sufficiently rich set of data the test object(s) is (are) suspended from
a turntable rotating around the vertical axis of the chamber, and electrical measurements are
repeated for different angular positions of the object. In addition, the transducer scans the
object horizontally, as shown in the figure 1. Such a scanning pattern guarantees that each
segment of the object’s boundary is touched tangentially by a propagating acoustic front at
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Figure 1. A propotype MAET scanner, horizontal cross-section.

least once. This, in turn, stabilizes the inverse problem solved as the first step of the image
reconstruction procedure, see section 3.4.

2.2. Details of the data acquisition scheme

The chamber, turntable, and spur gears driving the turntable were 3D printed of non-conduc-
tive plastic, so that the electrical currents were restricted to the near cylindrical interior of
the chamber. In order to facilitate propagation of acoustic waves generated by the transducer
into the chamber, both the chamber and the transducer are placed inside a larger tank filled
with water. The interior of the chamber is electrically isolated from the water in the tank by
a Tegaderm film covering the chamber’s window. This film does not significantly interfere
with the propagation of ultrasound, although a weak acoustic reflection from the film is reg-
istered by the transducer. The transducer we use has a central frequency 0.5 MHz (Olympus
Panametrics-NDT V389, f= 54.6mm, dia = 38 mm), and is driven by a rectangular pulse
transmitter/receiver (Olympus Panametrics-NDT V3077PR).

The inner diameter of the chamber is 75 mm and the width of a window is SOmm. The
Neodymium magnets used in the scanner are 75 mm in diameter and 25 mm tall. The vertical
distance between magnets is SO mm; the direction of the magnetic induction is near vertical
across the chamber. Measured in the center of the chamber, the magnetic induction is 0.35 T
with gradual decrease away from the central axis of the scanner.

In our experiments, the test objects were suspended from a turntable rotated about the
vertical axis of the scanner. Rotation is driven by a Velmex rotation stage, connected to the
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turntable through a set of spur gears (Such a setup eliminates magnetic interaction between
the electric motor and the strong field of the magnets.).

The interior of the chamber is filled with a saline solution, to provide both electrical and
acoustic contact with the tested object. Most of our experiments were done with 0.9% and
0.45% saline; stronger or weaker concentrations did not yield improvement in the signal,
but both somewhat decreased the signal-to-noise ratio (SNR). A partial explanation of this
phenomenon is attempted in section 3.4.

The electric potential in saline is picked up by four copper electrodes (see figure 1) made
of straight vertical copper wires (1 mm in diameter) running through the whole height of
the chamber. The wires are simply the naked ends of a solid core RG59 radio-frequency
cables connecting these electrodes to the amplifiers. Two high-impedance differential ampli-
fiers (Teledyne LeCroy, 1855A) are used to capture and amplify by a factor of ten the poten-
tial difference between electrodes #1 and #3, and between electrodes #2 and #4. The two
amplified signals are registered by two channels of a multifunctional DAQ card (National
Instruments PXI 6289, sampling rate 20 ms per second).

Thus, in each experiment we collected two time sequences, U; (¢, 8, y) and U, 4(t, 0, y) rep-
resenting the potential differences between electrodes #1 and #3, and between #2 and #4,
for each position y of the transducer and angular position 6 of the turntable. The angle 6 was
sampled between 0 and 360 degrees, x, was scanned between —25 and 25 mm. These two sets
of data were used to reconstruct a MAET image, as described below.

3. Mathematics of the 2D MAET

3.1. Electric potential

It has been shown (Montalibet er al 2001) that if the tissue with conductivity o(x) moves in
a 3D space with velocity V(z, x) within the constant magnetic field B(x), the arising Lorentz
force will generate Lorentz currents J-(¢, x) given by the following formula

Ji(t, x) = o(x)B(x) x V(t, x). @))

Throughout the paper we will make the following simplifying assumptions. The magnetic
induction B is constant and oriented vertically, i.e. B = Bés (where €3 is the unit vector par-
allel to the x;3 axis, which, in turn, is perpendicular to x; and x, axes shown in figure 1).
The conductivity o(x) is non-zero and depends on the 2D variable x = (x;,%). The chamber
walls are vertical, and the acoustic excitation is x3-independent, with velocity V(z, x) oriented
horizontally*. Under these assumptions the Lorentz currents J* and the secondary Ohmic cur-
rents JO flow horizontally, and the mathematics of the problem becomes two-dimensional,
ie. JHr,x) = (JE, TN, x), IO, x) = (U9, J9)(t, x), V(t,x) = (V;, Va)(t,x), etc. Under these
assumptions equation (1) takes the following form:

JE(t, x) = o(x)BV(t, x), 2)

where V(¢, x) is the left normal to V(t, x), i.e. VX(z, x) = (— V5, V))(1, x).
The Ohmic currents JO(z, x) are related to the electric potential u(z, x) in the medium by
the Ohm’s law

JO =oVu.

4If the velocity field is not strictly horizontal, then, due to the properties of the cross product in equation (1), the
vertical component of the velocity will have no effect on J-—if B is strictly vertical, as we assume. If B is also not
strictly vertical, there will be some blurring of the boundaries in the image.
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Since the propagation of charges is divergence-free and div(J- + J°) = 0, we obtain

V- -oVu=-V-J-. 3)

Let us consider an acquisition scheme that involves a circular chamber and a set of N
equispaced electrodes (Our actual set-up is a particular case of this more general scheme, with
N = 4.). We assume that the interior of the chamber is a disk of radius R; as shown in figure 2
where the means of delivering ultrasound excitation are omitted. The N electrodes are placed
at the points y; lying on the concentric circle of radius R in an equispaced fashion:

. 2r(j— 1) .

Y = R(cos g, singy), 4=+ ]T j=1,...N, ()
where U angle determines the angular position of the first detector. We will denote the disk (of
radius R,) describing the interior of the chamber by €2, and its boundary by 0 2. The object
of interest is contained within a smaller concentric circle of radius Ry; the interior of the latter
circle will be denoted by €2 . The ring 2\ € is filled by the saline with constant conductivity
9.

The chamber walls are non-conductive, therefore, there are no currents through 0 €2 and the
normal component of the total current J-(¢, x) + JO(¢, x) vanishes on 9 Q :

aoiu(t, ) =-J n@), €09, (5)
on

where n(z) is the exterior normal to 0 € at point z.

We assume that the speed of sound c in the tissues and the density p of the tissues are
constant and coincide with those of the surrounding saline. The pressure of the sound waves
p(t, x) satisfies the standard linear wave equation:

1 0?

———p(t,x) = Ap(t, x), xe R

5P = Bp(t.)
Additionally, p(t,x) is the time derivative of the velocity potential (¢, x) (see, for example
(Colton and Kress 2001)), so that

Vi) = Ve, px) = Lo, ©)
P ot

The above formulas show that not only the components of the model velocity satisfy the wave
equations, but that the velocity itself is a gradient vector field. This property needs to be taken
into account when modeling the acoustic fields of a transducer; otherwise, the total model of
MAET measurements may give non-physical results.

3.2. Lead currents

The measurements of the electric potentials u(, y;) made by point-like electrodes at the points
V€ g, (see equation (4)) are combined with weights W to obtain a measurement functional
M, W):

N
MEW) =S Wault,y), W= (W, Wa). %

j=1
From the engineering standpoint, if N is even, this can be accomplished by combining sev-
eral standard differential measurements. In our scanner, for example, we measure the voltage
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Figure 2. An idealized MAET chamber.

differentials u(z,y;) — u(t,y;) and u(t,y,) — u(t,y;), out of which various combinations in the
form (7) can be generated.

The only restriction we impose on the choice of weights W; is that their sum should equal
to O:

N
Zl W;=0. ®)
p=

This requirement is needed, in part, because potential u(z, x) is defined only up to an arbitrary
constant. If (8) is satisfied, measured values M (¢, W) (equation (7)) do not depend on the
choice of this constant. The simplest example of such a measurement is a standard differential
measurement with N=2, W; =1 and W, = —1.

As it is usually done when investigating MAET, we introduce the notion of the lead
(or virtual) current. This is the current that would propagate through the chamber (contain-
ing the saline and the object of interest) if one injected currents W; through the electrodes.
Quantitatively, the density and direction of the lead current also describes the sensitivity of
the system of electrodes to a unit electrical dipole placed at the varying locations within the
chamber, if the potential recorded on each electrode is weighed with a weight W;. As a result,
the MAET measurements can be expressed in terms of the lead currents, as explained below.

Let us consider an auxiliary problem of finding the electric potential w(x) within 2 in
the absence of Lorentz currents, but with currents injected in the medium through the point
electrodes placed at the same points y; as defined above, with currents W; injected through
the electrodes placed at y;, j = 1,...,N. As explained in the appendix, such a lead potential
ww(x) satisfies the conductivity equation in §2 with punched out points y;, j = 1, ..., N (where
it becomes singular)

Voo@Vwwx) =0, xe\(Jws )

it also satisfies the Neumann boundary condition on the regular (non-conductive) boundary

9 @ =0,  zedQ, (10)
on
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and the asymptotic growth condition at the singular points
1 .
ww(x) = ——Wln|x —y,[ + O(1) as x =y, j=1,..,N. (11)
2moy :
(The big O notation in the last equation indicates that the difference between wyw(x) and

1 . . o
Wi In|x — y;| remains bounded in the limit x — y,).

Solution wy of the equation (9) with boundary conditions (10) and (11) can be found as the

sum of two functions w““g(x) and iy (x),

Ww(x) _ Wsmg(x) + Wsmoolh(x)’ (12)

where wiy€ is defined by the following formula

Slng()c) = Z W;ln|x — (13)
00 j=1
and wiy°°"(x) is found as the solution of the following boundary value problem in
VoV (x) = —x(0)V - 0()Vwigd(x),  x€Q. (14)
0 0 s
W) = i), 2€0Q, (15)
on 8n

where the indicator function y(x) is defined as as follows

(x) = 0, XGQ(),
X701 xevqp.

Equation (14) with boundary conditions (15) has a unique solution if condition (8) is satisfied
(Kunyansky et al 2017). It is easy to see that, since w;rvnomh is bounded in €2, the sum (12) satis-
fies equations (9) and (10) and has the desired behavior (equation (11)) at the singular points.

The lead current JW-° (corresponding to a particular choice of weights W and given o(x))

is now defined in € through the lead potential wy as follows

o) = (W71 = o) Vww(). (16)
Below we will have to deal with the 2D curl C VV"T(JC) of this current defined as
0 0
CW,o'x _JWU __on'x
()= o2 () o ().

The lead current analyzed above can be physically realized by applying a set of voltages
to the point-like electrodes. In addition to such currents we will need to analyze currents that
would be excited in our medium by an external potential w'™ that would exist in a medium with
uniform conductivity. Such a potential can be represented by a function harmonic in 2. We
thus consider the following problem: given a function wi"(x) harmonic in €2, find the solution
w® to the following boundary value problem

VoV (x) = —x(x)V - o(x)Vw(x), xe, 17

Iy =0, zedQ. (18)
on
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It is shown in Kunyansky et al (2017) that this problem has a unique solution w°" and the sum
wi + wo solves the conductivity equation in €

V- o)V [wih(x) + w(x)] = 0, xeq.

Thus, we define a virtual current J*" induced by the potential w" in 2 filled with the medium
with conductivity o(x), by the formula

370 = (3,05 @) = o)V W) + woR)]. (19)
We, in particular, are interested in the 2D curl CWi"’”(x) of this current defined as follows
in 8 a
Cw,ax:_on 7_Jwa
(x) x> () 0% (). (20)

We notice that both curls C™V** and "7 are finitely supported within Q \ g and vanish within
€, since o(x) = oy in €y .
Finally, by substituting (19) into (20) we obtain for future reference, the following equation:
ng, 0o 0 o 0 in,0Ino wino01lno

CW s 1n+ out 1n oul JW 07 —J
8)61 axz [ ] 8)62 8)61 [ ] 8X1 ! axz

1)

3.8. Lead currents and MAET measurements

The lead current JW (given by (16)) plays an important role in the analysis of the MAET mea-
surements M (t, W). It can be shown (Kunyansky ef al 2017) that

M(t, W)= —B f IV Ve, x)dx (22)

The above equation (22) shows that the weighted measurements M (z, W) can be expressed
through the magnetic induction and velocity of the medium physically present in the system,
and through the lead currents that are not. This seeming contradiction is easily explained: the
lead current describes the sensitivity of our measuring system to the Lorentz potential (2)
within the medium.

Let us recall that our velocity field is given by (6); using integration by parts one obtains

9w
M, W) = —— IV — 2V ldx
( ) f(@xl 2 8)62 )

= [ so(r,x>cw’“<x>dx+§ [ et @@ - m@ @1z,

(23)
where n(z) = (n, n2)(z) is the exterior normal to 0 2. In many important situations the above
equation can be further simplified. For example, if the object is illuminated by ultrasound
pulses (as is done in our scanner), there is a time interval during which velocity potential
©(t, x) is supported strictly inside € (i.e. it vanishes on the boundary 0 Q). If 7 lies within this
time interval, (23) simplifies to

M(t, W) = f o(t, x)C™ 7 (x)dx. (24)
Q
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3.4. Basic properties of MAET measurements

It is easy to check that within any region 2, C 2 in which o(x) is constant, the lead current
JW-7 is curl-free, i.e. cV’ =0in Q. . Indeed, similarly to (21) one obtains

W = ai(a(x)iww(x)) - i(CT(X)iWW(x))
X1 0

ox 0% X1
_ Oww(x) 0o(x)  Oww(x) do(x) JW’Ualna _JW,Ualno
8%2 fih Ein 3x3 2 E%n 2 8x3 '

If o(x) is constant, in the above equation the partial derivatives containing o(x) vanish, yield-
ing c™? = 0. Therefore it follows from equation (24) that at any time ¢ when the ultrasound
pulse is supported strictly within €., the MAET signal M(f, W) is equal to zero. In other
words, there is no MAET signal from regions of constant conductivity; if the object consists of
such regions, the signal will be generated only when the pulse propagates through the bound-
ary between these regions. Nevertheless, if a sufficient amount of information is acquired, the
conductivity can, in theory, be reconstructed exactly at each point in €, from MAET measure-
ments (see Ammari et al (2015) and Kunyansky (2012) and the explanation given below).
Another interesting observation has implications to modeling and testing MAET. Suppose
w(x) is a lead potential satisfying equation (9) with boundary conditions (10) and (11), and
with given conductivity o(x). Then the same equations are also satisfied by a lead potential

wi(x) = Cw(x) with conductivity o(x) = %J(X), where C is an arbitrary non-zero factor. The

lead current J;(x) = o1(x)Vwi(x) = %V[Cw(x)] = J(x) clearly remains the same. Therefore,
MAET measurements with o(x) replaced by oy(x) will remain unchanged, according to (22).
There is no contradiction between this fact and our ability to reconstruct o(x) from MAET
measurements, since it is assumed that we know the values of o(x) on the boundary 9 2. This
property also explains, at least partially, why we obtain approximately the same strength of
the signal and the SNR, when using saline with different concentrations of NaCl in the range
of, say, from 0.3% to 2% (However, one has to keep in mind that the currents depend on the
conductivity non-linearly, and a more quantitative analysis of this phenomenon is far beyond
the scope of the present paper.).

If one assumes that a sufficiently rich set of acoustic illuminations can be applied to the
stationary object while doing MAET measurements (e.g. the object can be illuminated from
all the directions and the bandwidth of the acoustic signal is infinite), then the curl c™7 in
(24) can be reconstructed exactly. Indeed, such an ideal acoustic illumination implies that an
arbitrary set of functions ¢(¢, x) can be formed either directly, or by combining the measure-
ments corresponding to several different propagating waves (so called synthetic focusing,
see Kuchment and Kunyansky 2010 and Kuchment and Kunyansky 2011b). For example,

one can focus (¢, x) to approximate at t = #, a Dirac delta-function ¢(ty, x) = d(x — y); then
equation (24) yields value CW"’( ¥) (up to a known factor E). Alternatively, one can gener-
ate monochromatic plane waves of different frequencies anil directions, thus recovering the
Fourier transform of C*V”. This procedure is described in Kunyansky (2012), and is alluded to
in Ammari et al (2015). After C W7 is recovered at each point of the domain, one can recover
the corresponding lead current. In the case when two or more lead currents are measured,
one can use such currents as a local basis and reconstruct the gradient of In o, and thus the
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conductivity o (Kunyansky 2012). If only one current is measured, the problem can be solved
by the optimization procedure developed in Ammari et al (2015).

The above reconstruction procedures are not directly applicable to the present MAET scan-
ner. First, in order to obtain a multi-directional acoustic illumination the object is rotated,
while the electrodes remain stationary. Therefore, at each position of the turntable a new lead
current is present, and the synthetic focusing in the form assumed in the previous works can-
not be applied. Moreover, the use of piezoelectric transducers leads to a loss of significant
part of low-frequency information about the curl Y7, Thus, the lead current(s) cannot be
accurately reconstructed (even if all illumination directions were utilized), invalidating the
known methods of reconstruction. Below we develop exact and approximate reconstruction
techniques that can be used for processing the real data we have.

4. MAET with a rotating object

In this section we describe reconstruction techniques that can be used with our MAET scan-
ner where the object is rotated, the electrodes are stationary, and the transducer does not emit
lower frequencies.

4.1. Synthetic flat transducer

In spite of the frequent use of focusing transducers in ultrasound imaging, for a given trans-
ducer the precise space- and time-dependent velocity field of an acoustic wave in a liquid is
not easy to obtain. Direct application of our MAET techniques, however, would require such
an information, since the direction of Lorentz currents is closely related to the velocity of the
wave in a given point. We circumvent this obstacle by utilizing a synthetic flat transducer, as
follows. For a given angular position of the object, we average electric measurements for all
transversal positions of the transducer (i.e. we average in x,, see figure 1). Since our measure-
ments depend on the velocity potential ¢(t, x) linearly, the averaged values we obtain are equal
to the electric response to a field produced by a very wide flat transducer.

In order to formulate a mathematical model for the corresponding ¢(z,x) we take into
account that the (relatively small) vertical components of the velocity do not produce Lorentz
currents (V is perpendicular to B,) and that the transducer is activated by a very short unipolar
electric pulse that can be approximated by the Dirac’s delta function in time. The resulting
acoustic wave can be modeled as a short plain wave propagating in the x; direction away from
the transducer.

Within the present section (section 4) we assume for simplicity that our synthetic transducer
has an ideal frequency response. A more realistic, band limited (with absent low frequencies)
model is considered in section 5). Thus, our present model for (¢, x) has the following form

o(t,x) = Cirand(—Xggan + X1 + 1), (25)

where ¢ is the Dirac’s delta function, Cy,, is a constant depending on the transducer that we
assume to be known, and X, 1S the x; coordinate of the transducer. From a physical stand
point the latter formula implies a flat frequency response (for ¢ as a function of excitation),
and yields the following expressions for the velocity and pressure

pt,x) = Ciran€6'(—Xiran + X1 + 1) (26)
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Ciran -
V(t,x) = %615/(*xtmn +x + Ct). (27)

The above formula for V(z,x) yields values that integrate to O in ¢, which properly represents
the fact that the working surface of the transducer returns to the initial position after the pulse.
We notice that formulas (25)—(27) cannot be valid outside of the range of positions of the
transducer in x, variable; however, we will only need these approximations to be valid inside
the region 2\ g, where the curl of a lead current is not zero.

By combining equations (24) and (25) we obtain

Mt W) = BCiran f (S(_xtran +x + ct)CW,ff(X)dx
P
BCo [ -
_ bCuan f CY7 [(yan — €)1 + 5251 ds,
P

R

where we, for convenience, extended C™""° by 0 to R% The latter formula represents a set of
integrals of c%7 overa family of vertical lines; this set can be viewed as a Radon projection
of C™?. In the next section we briefly review basic properties of the Radon transform.

4.2. Basic facts about the Radon transform in 2D

Suppose a function f{x) is finitely supported within a disk D of radius Ry. The Radon transform
Rf is the values of line integrals of f over all straight lines:

gp)=ROpw) = [f(potswbids,  peR, wes),
R

where w is the left unit normal to w (For convenience we extended the definition by zero to
the lines that do not intersect the support of f.).

The Radon transform can be inverted, i.e. f can be reconstructed from projections g. We will
do this using the well-known filtration backprojection algorithm (see, e.g. Natterer (1986))
consisting of applying the ramp filter to g:

1 . .
gu(p.w) = —— {; ol JR: g(p, wh(x)e P *dp |e™ " dp, (29)

and back-projecting the filtered projections g,,( p, w):

f&x) = f gux - w,w)dw, xeR2 (30)
Sl

It follows from formula (28) that

RCw,H , é — 14 M( Xtran — P , W),
( )(p.é) BCo :

i.e. from one set of electric measurements one can recover one Radon projection (corresponding
to w = &) of curl C™*°. In order to recover a full set of projections of a function describing an
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object, one usually rotates a detector with respect to the object, or the object with respect to the
stationary detector. In our case, the function we would like to reconstruct represents the curl
%7 of a lead current. If we turn the object but leave weights W unchanged, the new current
will not be a rotation of the original one. We address this problem in the next section.

4.3. Synthetically rotating the currents

Our circular domain €2 with the fixed set of electrodes at points y; (see figure 2 and equa-
tion (4)) is invariant with respect to rotations by any angle 6, = 27k/N, k € Z. This means that
if a lead current is generated by a set of weights W, then by rotating the object by the angle 6,
and by properly re-assigning weights, one will rotate the original current by 6;. By doing this
with k =0, ..., N — 1 one could obtain a total of N projections of cWe. However, the number
of projections needed for a high resolution reconstruction is usually measured in hundreds;
it would be impractical to have so many electrodes. Therefore, a more sophisticated approxi-
mate technique is developed below.

Let us consider virtual current and the corresponding 2D curl induced by the excitation
potential w, determined by formulas (17)—(20). We will utilize the current J*“ and curl C*°
that correspond to the linear excitation in the form

wi(x) = wi(x) = Bx -7,

where v = (cos a, sin @) is a given unit vector, and (3 is a constant to be defined below. We
notice that such current may not be easy to physically obtain in our system, since w”(x) does
not satisfy the zero Neumann boundary conditions. However, as we discuss below, C”7 can
be approximated inside 2\ )y by a lead current corresponding to a certain combination of
weights W. Moreover, if the object is rotated, one can also excite a rotated version of the cur-
rent C"*? by changing the weights W .

In order to explain this idea in detail, consider a linear operator R, on R? that rotates a
vector clockwise by the angle ¢. Then the curl C¥"7®)(x) corresponding to the rotated
conductivity o(2R,x) and the rotated potential

WI(Rpx) = BRox -y = fx- Ry 3D

is the counterclockwise rotation of the original current C”°:
me"(ﬂ(mpx)(x) — C’Y,U(X)(mwx).

Let us now consider a set of weights WY = (W7, ..., W}) subordinated to vector v and
given by the following formula:
1 1 (27r( j—1
N

V= —
Wi=—y-v=—cos

+U— a). (32)
NR N

Correspondingly, for the rotated ~ the weights W% = (W7, . W ") will have
values

WE.R*Y”’Y =

1. =
i = NRY N

1
R_y= ﬁ cos + V¥ —a+ <p). (33)

As shown in the companion paper (Kunyansky et al 2017), the resulting function w%ﬁ{gﬂ,

(see equation (13)) approximates within ©\€)y the linear potential w'(!R,x) (equation
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(31)). Further, the resulting 2D curl ™" 7 of the lead current JV 7 (as defined by the
equations (12)—(16)) approximates the curl C 7’”(”)(i)‘i\ox) excited by potential w” (2R x):

AV R YR ), xEQ\Q.

Such approximations become more accurate if the number of electrodes N is increased, or the
ratio R/Ry becomes large. For fixed values of these parameters a certain error is introduced

when CW%W"H(x) is used instead of C”’”(x)(%g,x). From the practical point of view, such an
error was acceptable in our experiments. The technique of rotating currents synthetically, as
presented above, allows us to obtain the Radon projections of the rotated current without rotat-
ing the electrodes physically.

Thus, if we measure the corresponding acoustic response M(t, W®-+7) given by
equation (28)

M, WER—@;’)’) = % f Cwmiﬁﬁ((xuan — c1)é) + sé;)ds
p
R

~ BCian f C%U(X)((xtran — ct)R €1 + sRer)ds
p
R

— B (R ) (rgan — 1), 9,20),

then the Radon projections g(p,w) of C""% can be approximately computed from M as
follows

- v,o(x — Xtran — v
8. 8D = (RCNp R o)~ L M( et ,WM). (34)
tran

Now, if the measurements are done for all values of ¢ in the interval [0, 27], curl Ccrow

can be reconstructed from g( p, w) by using the Radon inversion formula (equations (29) and
(30)). This represents the first step of the reconstruction procedure in Ammari et al (2015) or
Kunyansky (2012) allowing one to find the conductivity by using one of the algorithms pro-
posed in the above mentioned papers.

4.4. Summary of the algorithm
To summarize, this reconstruction procedure involves the following steps:

e Select two perpendicular directions v)(cy;) and v (ay) with ay = oy + 7/2; choose the
number of object’s angular positions N, and set 6 = 27/N.
e Foreachj=1,...,N:

—_

. rotate the object to the position ¢; = jéy;

2. form vectors W?-7" and W?-"" with components given by equation (33) with
v = and a = oy, a;

3. measure M(t, me”m) and M(t, me”m) by averaging all measurements made by

scanning the transducer in x, direction;
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(1)

4. compute g(”(p,i)‘i @) and g?(p,R,€)) by applying formula (34) to M(z, Wy
and M(t, WR-:7),

)

e Reconstruct curls C7" and 72 by applying the inverse Radon transform (equations
(29) and (30)) to the data g“)(p,% el) j=1,.,N,and g(z)(p,iﬁ el) j=1,.,N.

e Reconstruct lead currents J7*7 and e and the conduct1v1ty o(x) from CV( "o and
c'e by following either procedure presented in Kunyansky (2012) or the algorithm of
Ammari et al (2015).

5. Linearized reconstruction

The reconstruction procedures developed in the previous sections and elsewhere, are all based
on the assumption that the acoustic excitations are rich enough to allow for the quantitatively
accurate reconstruction of the curl(s) of the lead current(s). However, piezoelectric transduc-
ers commonly utilized in practical implementations of MAET cannot emit a wide range of
lower frequencies. This disallows the use of the above mentioned methods. In the present
section we develop a rather crude approximate reconstruction technique that recovers bound-
ary of the objects from the band-limited measurements delivered by the real scanner we have
built.
Our scanner has four electrodes located at the points y; = R(cos 1, sin¢y), 1, = ¥ + > Zj,
U= —7, j=1, .., 4. We consider two vectors, 7" = (coS qu, sin a,,), m = 1, 2, with
ap = —7r/4 and oy = 7r/4 and seek to reconstruct (as a first step) 2D curls C7 9.7 of the virtual
currents excited by linear potentials wi™™(x) = w?"'(x) = Bx - v, m = 1, 2. By applying
formulg)(33) with such parameters, one obtains the following values for weights W2-2" and
WH-77

1 . . 1 . .
W = Z(cos @, — sin g, — cos @, sin ), WH-27 = Z(sm ©, €08 ©, — sin , — cos ).

35

Equation (34) with the above choices of W™ 2" and WR-"? yields approximate Ra(dorz
projections, and the filtration backprojection algorithm ((29) and (30)) then yields (approxi-
mately) curls C 1" and €77

We would like to have a reconstruction technique that (unlike (Kunyansky 2012)) does
not require explicit reconstruction of the lead currents. Let us consider a situation where the
conductivity is a slight perturbation of a constant, i.e.

o(x) = op + €oy(x). (36)

Recall that curl C7"¢ corresponds to the solution of the problem (17) and (18) with the right
hand side w' equal to the linear potential 3x - v, If ¢ = 0 then corresponding w°'* = 0 and
current J ”/('")"’O(x) is a constant vector:

J1"00(x) = gV (Bx - ™) = o3y, m=1,2.
Then, for e > 0,

J"0(x) = ooy ™ + Oe) = oy, m=1,2. (37)

By applying formula (21) to C"""7(x) we obtain
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dlnox) Jrin’g(x) Jln a(x),
0x 0%

By combining (37) and (38) we relate C7"7 to directional derivatives of In o

O o) = 15" w) m=1,2. (38)

"0 (x) = o | A" oot _ %" 0o , m=1,2.
2 Ox : Ox

@_ _.M
1

We have chosen vectors 4™ so that ¥® is the right normal to ), i.e. v —v5 and

7(22) = 'yil). Taking this into account yields

") ~ —apy® - Vino(x) = — a3 AT
PN
" (x) ~ oy ? - Vinox) = aoﬂ—a Ino(x) .
@

By computing directional derivatives of the last two equations one can find the Laplacian of
Ino:

o O inay) o PIOE | OPnow)
i 2,0 _ A0, 5 - _
o053 ( oy® C"%(x) PO C (x)) ~ NGO + @) Alno(x). (39)

In other words, under the assumptions that the conductivity is close to a constant, and that
the transducer is ideal, equation (39) reconstructs the Laplacian of the conductivity logarithm
A ln ¢. The advantage of this procedure in comparison with the existing, more accurate MAET
reconstruction techniques, is that it still can be applied when the transducer is significantly
band-limited, since it foregoes the reconstruction of the lead currents. Moreover, it is quite
easy to understand what exactly is reconstructed in the band-limited case. Indeed, if the trans-
ducers response is not ideal, equation (25) should be replaced by

@, x) = Cyan)(—Xiran + X1 + ct)

where the 1D Fourier transform of 7(p) is the frequency response of the transducer. This
in turn, results in measuring the convolution g(p,w) * n(p) in the first variable, instead of
g(p,w) given by the equation (34). It is well known, that when the filtration/backprojection
formula is applied to projections of a function convolved with a given function 7, the result
of reconstruction is represented by the convolution of the true reconstruction with a function
Z(x) whose 2D transform equals to /}(|£|). In other words, instead of C 7.7 we obtain the con-
volution of C “’('")’”(x) with the function Z(x). Further, the derivatives in equation (39) commute
with convolutions. Therefore, instead of A In o(x) our method will reconstruct the convolu-
tion (A In o(x)) * Z(x). In particular, if the transducer does not reproduce lower frequencies,
the reconstructed image will represent a high-frequency version of A lno(x) resulting in a
further emphasis of the boundaries, and amplification of oscillations in the image.

5.1 Summary of the algorithm
To summarize, the linearized algorithm involves the following steps:

e Select two perpendicular directions V(i) and Y®(ay) with oy = —7/4 and oy = 7/4;
choose the number of object’s angular positions &, and set dp = 27/N.
e Foreachj=1, ., N:
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1. rotate the object to the position ¢, = joy;

2. form vevctors W32 and W%-27? with components given by equation (35) with
Lp - Lp/’ (1) )

3. measure M((t, W?-+"") and M(t, W?-+7") by averaging all measurements made by
scanning the transducer in x; direction;

4. compute g(l)(p,i)‘{ @) and g?(p,R,€)) by applying formula (34) to M(z, W2
and M(t, W=7,

e Reconstruct curls C7"? and C7%7 by applying the inverse Radon transform (equations

(29) and (30)) to the data g(p, R,@),j = 1, .., N, and g )(p i)‘i 5€0,j =1, ., N.
e Reconstruct an approximation to A ln o(x) from c"7 and C° 7 using formula (39).

(The reader is reminded that, if the transducer is band-limited, instead of A In o(x) our method
will reconstruct the convolution A In o(x) * Z(x).)

6. Examples of reconstruction

In this section we demonstrate performance of our scanner and the reconstruction algorithm of
section 5 in several experiments involving some high-contrast phantoms and a real biological
object. In all of the experiments the number of the Radon projections (i.e. angular positions
of the object) was 200. The number of steps in the transducer’s movement in the transversal
direction was 40 for each projection. In order to increase the SNR of the signal, each measure-
ment was averaged several hundred times (256 to 1024, depending on the experiment). The
pulse repetition rate was 1 KHz. Depending on the amount of averaging, the total scan would
take from approximately an hour to two and a half hours.

Our phantoms were made to have a significant contrast of conductivities, and had vertical
boundaries to adhere to the two-dimensional nature of the measurements. All the test objects
were immersed in a 0.9% saline solution.

In general, we do not expect such a prolonged immersion in saline to have significant
effect on conductivity of tissues in biomedical applications, since we use the physiological
concentration (0.9%) that naturally occurs in human blood. However, we believe it did have
an adverse effect on those of our test objects that were made of agarose gel (see the discussion
of the ‘layered phantom’ below). This, however, is a difficulty facing the experimenters, and
not a drawback of the method.

The measured signal was pre-processed by applying a band pass filter n(¢) in the frequency
domain. The filter was a product of two function, n(§) = 7,(§)n,(§) with

m(€) = {0'5(1 — cos(m&/E)), [€1<§ © = {cos(O.Swé/fz)), €] <
1 L fg>e " 0, ld>&

where the typical values of the cut-off frequency &, and parameter &, were 0.85 MHz and 0.3
MHz, respectively.

6.1. Lard phantom

The first phantom we present is a lard cylinder, 28 mm in diameter, shown in figure 3(a)
mounted on the turntable. The cylinder was intentionally mounted in an off-center position,
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Figure 3. First test object: a lard cylinder (a) phantom attached to the turntable
(b) color map of the reconstructed image —Alno * Z(x) (c) grey scale image of the
image (d) intensity profile of the image along the vertical line shown in part (c).

to demonstrate that we do not take advantage of the radial symmetry of the object. The lard is
practically non-conductive, yielding a very high electric contrast with the surrounding saline.
The reconstruction representing a high-frequency approximation of —A In o(x), is shown in
figure 3(b) as a color image and in figure 3(c) using a gray scale (The size of the reconstruction
square (here and below) is approximately 64 x 64 mm.). Figure 3(d) demonstrates intensity
profile of the image along the vertical line shown in part (c). The boundary of the cylinder is
clearly visible in the images. The absence of the lower frequencies leads to oscillations in the
reconstruction. This is clearly seen in figure 3(b): the boundary is represented by two yellow/
red circular contours (depicting positive values) and a blue circle (showing negative values).
The same oscillations are also clearly visible in figure 3(d).

6.2. Layered phantom

Our next phantom is a cylinder consisting of several layers of different materials, shown in
figures 4(a) and (b). The middle layer of the phantom consists of (non-conductive) lard. The
red layer is made of agarose gel containing 3% salt (NaCl). The conductivity of this material is
quite close to the 3% saline, i.e. it is significantly higher than the conductivity of the surround-
ing 0.9% saline. The blue layer is also made of agarose gel without adding any salt; its con-
ductivity is close to that of tap water, i.e. significantly lower than that of surrounding saline,
but higher than that of lard. A significant drawback of agarose gel as a material for MAET
phantoms is that it is water-based. This leads to a quick diffusion of the salt contained in the
gel, which makes the electrical interface between the gel and surrounding saline blurred, and
destroys sharp contrast we seek for our experiment. Such a diffusion was noted in the recent
work on MAT-MI (Li ef al 2007), where the authors used thin film to separate conductive and
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Non-conductive
gel

Conductive gel
(red)

_-0.5
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Figure 4. Reconstruction of a phantom consisting of layers of lard, red gel (3% NaCl)
and blue gel (0% NaCl) (a) the phantom (b) inner structure of the object and its
positioning on the holder (c) reconstruction shown using color scale (d) grey scale view
of the reconstructed image.

Saline

Lard Saline

Gel 3% Nacl
Gel 0% Nacl

Figure 5. Average intensity profiles through the reconstructed image (a) location of
rectangular regions supporting the profiles (b) profiles corresponding to the rectangles
marked by letters H and V in part (a).
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Figure 6. A meat sample and the reconstruction (a) the sample (b) sample placed in the
holder (c) grey scale reconstruction.

non-conductive gels. While such a technique is acceptable in MAT-MI, in MAET an applica-
tion of a dielectric film would create an artificial dielectric boundary producing a strong signal
of its own. We, therefore, cannot utilize the film, and can only remain aware of this effect.

The reconstructed images ( representing —Alno * Z(x)) are shown in figures 4(c) and (d).
Figure 5 presents the intensity profiles through the image. Since the image is noisy, in
figure 5(b) we demonstrate the average horizontal profile over the rectangle marked by letter
H in part (a), and the average vertical profile over the rectangle marked by letter V.

As one would expect, the most visible boundary in figures 4 and 5 is that between non-
conductive lard and highly conductive red gel. The boundary between red gel and saline is
less visible, partially (we believe) due to the above-mentioned dissolution of the gel/saline
interface, and partially due to lower contrast of the conductivities. The boundary between the
non-conductive gel and saline is almost invisible; it is weaker than reconstruction artifacts
present in the image.

6.3. Bovine sample

The third object we imaged was a beef sample containing both muscle and fatty tissues. The
sample is demonstrated in figure 6(a); it was placed in the holder as shown in figure 6(b),
with the slit tightly stitched together to avoid creating an additional jump in conductivity. The
size of the sample can be estimated by comparing it to the diameter of the holder (38 mm).
The thickness of the sample (in the vertical direction was 25 mm. The reconstructed image is
presented in figure 6(c). The outer boundary of the sample is clearly seen in the image, with
the interface between the non-conductive fat and the saline visible the best due to the high
electrical contrast between these materials. The bright dot in the middle of the image corre-
sponds to the plastic axis of the holder. This axis was located at the end of the slit; however,
there is no line in the location of the slit (as intended). In order to better understand the nature
of other details in the reconstruction we slit the sample horizontally. The comparison between
the reconstruction and the sliced sample can be done with the help of figures 7(a) and (b). The
yellow arrows in these images highlight the boundary between the fat and muscle; inside the
sample it has slightly different shape than that suggested by the image in figures 6(a). The blue
arrows highlight two lines inside the sample clearly visible in the reconstruction: they, appar-
ently, are produced by the narrow slivers of connecting tissue visible in figure 7(b).
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Figure 7. Comparison of the reconstructed image of the meat sample and the horizontal
cut (cross-section) of the sample.

7. Conclusions and further remarks

We have presented the 2D prototype MAET scanner, described its theoretical foundations,
and demonstrated the first experimental results obtained using the scanner and the linearized
reconstruction technique. One of the novel features of our scanner is the use of two pairs of
electrodes, allowing for a simpler image reconstruction algorithm. While the advantage of
having multiple electrodes was demonstrated theoretically in Kunyansky (2012), all existing
experimental implementations of MAET have used one pair of electrodes.

Another important innovation in our scanner is the rotation of the investigated object, which
allows us to obtain a uniformly good reconstruction of material interfaces independently of
their orientation. In order to permit such a free rotation, the electrical contact with the object is
implemented by the electrodes submerged in the surrounding saline, rather than by attaching
them to the object. This novel data acquisition scheme, in turn, required new reconstruction
techniques. We, thus, developed the theory of the 2D MAET reconstruction with point elec-
trodes submerged in the saline and with the use of a synthetic flat transducer and synthetic lead
currents. The more general part of the theory is presented in section 4 (the mathematics here
is discussed on an engineering level; a more rigorous study can be found in the companion
paper (Kunyansky et al 2017)). In that section, as in all existing theoretical papers on MAET,
we assumed that the acoustic excitation is wide-band, i.e. the signal contains both very low
and high frequencies. Under this assumption, theoretically accurate reconstructions can be
obtained using our technique, if the number of electrodes is sufficiently large.

When MAET is implemented using a piezoelectric transducer, a significant portion of
lower frequencies is absent in the acoustic pulse. In this case the assumption of a wide-band
excitation is no longer valid, making all existing theoretical studies inapplicable. In particular,
this makes impossible a qualitatively correct reconstruction of the lead currents which is a
required step in (Kunyansky 2012) or in the method of section 4. This represents a serious
challenge to quantitatively accurate reconstruction of conductivity o(x) in MAET. For the
purposes of this paper, we decided to forego such an accurate reconstruction and, in section 5
we developed a simplified, linearized version of the reconstruction procedure, where the lead
currents are assumed approximately uniform (up to a small perturbation) and known. This
algorithm yields approximate reconstruction of Alno(x) * Z(x), where Z(x) is determined
by the bandwidth of the transducer. This technique shows the boundaries between the regions
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with different conductivities, and/or small details whose conductivities are different from that
of the surrounding medium (such as, for example, the plastic post clearly visible as the white
dot in figure 6(c)).

Interestingly, a similar effect was observed in the recent works on MAT-MI (Mariappan
and He 2003, Hu et al 2011), where only the boundaries of the regions with contrasting
conductivities were also clearly visible in the reconstruction. In the latter modality the piezo-
electric transducer is used in a receiving mode. However, the absence of low frequencies in the
received signal has the same effect on the image as in MAET.

At least a couple of ways can be suggested for of overcoming this drawback in MAET. The
first approach consists in the use of wideband acoustic sources. So far all the experimental
work on MAET and MAT-MI was done using off-the-shelf diagnostic piezoelectric transduc-
ers. Instead, one could try to use custom made transducers with a wider bandwidth, or to
use several transducers with different central frequencies in succesion. Alternatively, wide-
band acoustical pulses can be generated photoacoustically (see, e.g. Wurzinger et al (2013)).
Similarly, for MAT-MI one could try optical (interferometric) registration of the ultrasound
signal, as it is done in photoacoustic tomography (e.g. Paltauf et al (2007)).

Another possible approach is to use available a priori information in combintion with non-
linear reconstruction algorithms to compensate for the absence of low spatial frequencies. For
example, if the object is known to consist of regions with constant conductivities, methods
based on total variation regularization (Rudin et al 1992) might improve the image. Feasibilty
and practical usefulness of such techniques requires further investigation.

Practical results of reconstruction using our present setup were demonstrated in section 6.
They show that using the present prototype 2D MAET scanner in combination with our image
reconstruction algorithm, one can image vertical boundaries of the regions with contrasting
conductivities. The boundaries are recovered uniformly well, independently of their orienta-
tion, both in tissue mimicking phantoms and in a bovine sample.

A significant and well-known issue that prevents wide practical use of EIT is a severe
loss of resolution in the center of the measured field. Hybrid imaging techniques, such as, in
particular, MAET and MAT-MI, overcome this difficulty by using utrasound waves to extract
high-resolution spatial information about the object of interest. Since utrasound pulses can
propagate quite deep into soft tissues without losing the intensity or coherence, the loss of
sensitivity toward the center of the object is minimal®. The results of the present paper confirm
this.

We would like to view the present work as one of the first steps toward the development of
the fully 3D MAET scanner capable of a quantitatively accurate reconstruction of conductiv-
ity in the tissues. The promising directions of the further research, in our opinion, are:

o the use of stronger magnetic fields to improve SNR;

e experimentation with alternative acoustic sources capable of wide band excitation;

o the development of alternative nonlinear procedures yielding accurate reconstruction of
conductivity from MAET data obtained using existing piezoelectric transducers;

o the design of a fully 3D MAET scanner.

3 On the other hand, presence of strong acoustic scatterers or absorbers (such as, for example, bone tissues) is likely
to have a significant adverse effect on the image.
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Appendix

In this appendix we explain our model of the lead current ww given by equations (9)—(11).
Within the punctured domain Q2 \ U?’:, ¥;» function ww(x) satisfies the standard conductivity
equation (9), and the usual Neumann boundary condition (10) is satisfied on the non-conductive
boundary 0 {2 . However, at the vicinity of a point y; the potential must become singular, since
a finite current is flowing through a point whose length is zero. Therefore, standard Dirichlet
or Neumann boundary conditions cannot be prescribed at such points. Instead, we will pre-
scribe the asymptotic behavior of ww(x) near these points, as explained below.

Consider, for simplicity, a one-point electrode immersed in the conductive medium
at x = 0, with a current W flowing into the medium. Let us assume that in a small disk D
(of radius d) surrounding the electrode the conductivity is constant and equal to oy (as is the
case with electrodes in our problem). Then in the punctured disk D\ {0} the corresponding
potential u satisfies the equation

V - o0oVu = opAu = 0,

i.e. u solves the Laplace equation and is a harmonic function. In a punctured disk, a general
solution of the Laplace equation can be obtained by the standard technique of separation of
variables in the polar coordinates r and 6, yielding

o] k6 00
u(r,0) = aplnr+ > ak%"‘ ST brle®,  re(0,d), 60€[0,27].
k=—00 r k=—o00

k=0
(A.1)

The total current W through the (outer) boundary 0D of D can be easily computed:

27 2m

0 0
W= f ooVu(x) - n(x) di(x) = oy f Eu(r, 0)do = oy f E(aoln r)d0 = 2magoy,
0 0

oD

where n is the exterior normal to D and dl(x) is the arclength. This immediately yields the
needed value for the coefficient a

ag=——.
2moy

The last sum in equation (A.1) describes the part of the solution #"™°¢(r, @) that is harmonic
in the whole D, including the origin. It is bounded by its maximum and minimum values
attained somewhere on the boundary 0D.
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The singular behavior of u(r, #) for small r is dominated by the terms akeri‘—j with largest

values of || (if any). This implies that in our problem all a; except a( should be set to zero,
eik&
TH

) describes a current flow that is directed toward the electrodes at those angles 6 where

otherwise the solution will be non-physical (For example, the real part of the term
t cos(kf)
S

cos(kf) is positive, and away from the electrode for 6 with negative cos(kf)). Therefore,

(equal

u(r,0) = In r 4 wharmonic(r 9y € (0,d), 6€[0,27].

To)H
Correspondingly, the singular behavior of wyw(x) that is physically meaningful and yields the
correct currents through the electrodes can be described by the equation (11). The fact that
equations (9)—(11) lead to a solvable model is established by equations (12)—(15) that present
such a solution.
Finally, one needs to verify that by imposing conditions (10) and (11) we guarantee the
uniqueness of the solution up to an additive constant term (unless an additional condition is

imposed, potentials are only defined up to a constant). Suppose w%lv)(x) and w%)(x) are two
solutions of equation (9) satisfying conditions (10) and (11). Clearly, the difference v(x) =
w(wz)(x) — w(wl)(x) satisfies Neumann condition (10) on 02 and equation (9) in the punctured
domain Q\U Yy In the vicinity of points y; function v(x) remains bounded. Therefore,

as our analysis of equation (A.1) shows, v(x) is actually harmonic in the vicinity of these
points including the points themselves. Therefore, v(x) satisfies the conductivity equation in
the whole of €2, subject to the zero Neumann boundary conditions on 0 €2 . Any constant v(x)
is a solution of such an equation; but it is well known that the are no other solutions (see
Miranda (1970), Thm 5.IV). Therefore, w%)(x) and w(vlv)(x) can differ only by a constant. Thus,
our model of the lead potential ww represented by equations (9)—(11) has a unique solution
(up to an additive constant term). Correspondingly, currents JW> are defined by equation (16)
uniquely.
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