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Asymptotic Methods for Thin High-Contrast
Two-Dimensional PBG Materials

Wally Axmann, Peter Kuchment, and Leonid Kunyansky

Abstract—This paper surveys recent analytic and numeri- air bubbles closely packed into an optically dense dielectric
cal results on asymptotic models of spectra of electromagnetic material) favor opening of spectral gaps. It is thus reasonable to
(EM) waves in two-dimensional (2-D) thin high-contrast photonic nqertake an asymptotic analysis of the problem, considering

bandgap (PBG) materials. These models lead to discovery of - . . .
interesting phenomena, including extremely narrow bands that the width of the dielectric as a small parameter and the electric

can be used for spontaneous emission enhancement, gaps in thé@ermittivity of the dielectric as a large one (certainly, interplay
long wave regions, and asymptotic periodicity of the spectrum. between these two parameters is also important). The hope is
The asymptotic results provide unexpectedly good qualitative that if one can derive such an asymptotic model, it can give
(and sometimes quantitative) description of spectral behavior for a lot of information. For instance, since the asymptotic model

materials of finite contrast. In some cases, simple ordinary dif- il bablv b h simoler than th qinal
ferential models can be derived that yield a good approximation will probably be much simpler than the original one, one can

of the spectra. In such situations, one can obtain approximate €Xpect some analytic rather than purely numerical results. One

analytic formulas for the dispersion relations. might be able to get better understanding of the qualitative
Index Terms—Photonic bandgap (PBG), photonic crystal, spec- (and maybe even quantitative) spectral behavior. There is also
trum. a hope to use the asymptotic spectra and eigenmodes as seeds

for numerical methods for the full problem, for instance, in the

finite element method as in [4] and [7]. The purpose of this

paper is to survey some recent developments in this direction.
HOTONIC bandgap materials (PBG; also called photonM/e will confine ourselves to the practically important case
crystals) have attracted a lot of attention since the ide& two-dimensional (2-D) photonic crystals and EM waves

was coined about a decade ago [39]. The reason is the wegltbpagating along the periodicity plane. In this case, there are

of expected (and partly achieved) applications. Probably theo possible polarizations (see [25], [26]). One is where the

main feature of these materials is existence of a gap (stopbaet#ctric field £ is perpendicular to the plane of periodicity

in the frequency spectrum of propagating EM waves. The¢&-fields). Here, one deals with the scalar eigenvalue problem

have been many successful experimental and numerical studnef-D

done in this area (see, for instance, books, bibliographies,

and surveys[6], [11], [21], [23], [26], [27], [30], [35], [38], —AE = Xe(z)E

and references therein). It is unusual, however, that in spit . .

of availability of a practically precise mathematical mode\f\'%ere)‘ = (w/c)?, w is the frequency of the wave; is the

: : : peed of light, and(x) is the (periodic) electric permittivity
(Maxwell equations), very little analytic study has been dong! ction in the plane. Thei-fields correspondingly yield the

The main reason probably is that many problems that arise h 1

are much more complex than in the case of the one partiéle speciral problem

Schiddinger operator, which is the main tool for similar studies 1

in solid state physics [1]. One can mention, for instance, that -V @

a simple mechanism of creating spectral gaps by combining

potential wells is absent in the case of the Maxwell operatdf/e want to mention that some spectral features are better

due to immobility of the lower edge of its spectrum. Somuisible in terms of the parametek (sometimes after an

of these mathematical problems are addressed in the sur@@propriate rescaling), rather than in terms of the frequency

[27]. There is, however, at least one analytic approach that That is why many our graphs are presented Xorather

works. It has been acknowledged (see the surveys and bolian «.

cited above) that thin structures of high dielectric contrast (like Probably the first asymptotic results for these problems
were obtained in [12]-[15]. We briefly formulate some of
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Fig. 2. The two subspectra fdg-waves in the high-contrast square PBG
structure.

s e e Ao e *Bssumptions are very far from what is currently techicall
feasible. Although this is true, there are amazing similarities
between the nonasymptotic and asymptotic results, which will

structures. One also notices that the gaps can be opened forddeliscussed in Section V. Besides, later on we will relax the

waves much longer than the period of the structure. AnalytiGsumptiore§ — oo to £§ — const> 0.

results explaining and predicting these effects are presenteddenote byS, the spectrum of the Dirichlet Laplacian on

An amazing possibility opens when one takes a second stAp unit square

of approximation (Section IV). Namely, the still complex

asymptotic problem on a graph introduced in Section Il can in Sy = {m*(n] 4+ n3)|(n1,n2) € Z*\{(0,0)}}.

some cases be very well approximated by a simple ordinar ) ,

differential model, valhich respepmbles the “q}lljantumpmechaniggére’ we adopt the standard r!ote}tlﬁrfor the set of integers.

on graphs” used in particular to describe quantum wires, thinTheorern 1:(See more details in [13] and [14]) The.sp.ec-
superconducting structures, and free-electron models of gum o of the problem (1) for the square Egometry splits into
ganic molecules (see, for instance, [2], [3], [8]-[10], [19], [20]WO Partsic = o1 U o2. If €6 — oo ande6™* — 0, then the

[31]-[34]). An example of such simplification is provided,fc}l,IOWIng §pectral asymptotics hold:

where one can end up with simple explicit formulas for ap- ) AnY finite partoy N [0, V] of the subspectrura, tends

the corresponding paft; N [0, N] of S;. The (Hausdorff)

proximation of the band functions. Section V briefly mentions, b h b ) 4 as foll _
correspondence between the asymptotic and direct numer Igfance between these two sets can be estimated as follows:

results. One discovers that the asymptotic results can provide d(S> N [0,N],o1 N [0, N]) < On(e8)2.
an unexpectedly good qualitative and even quantitative idea Y s

of the spectral effects. Section VI describes the asymptoffgie corresponding eigenmodes are the “air modes.”
results for theH-fields. The last two sections contain the ji) There exists a set of disjoint segment® =

main conclusions and acknowledgment of the support and [D,,,D;f] not depending or and§ such thatDy = 0,

information the authors received from funding agencies afié’ B

n — oo. Any finite partos N [0, N] of the subspectrum
oo behaves asymptotically as
[I. AN ASYMPTOTIC MODEL FOR THE E-FIELDS IN 2-D

In this section, we consider waves polarized in such a e it
way that the electric field® is perpendicular to the plane U [(e6) "D, (6) "Dl p N [0,N].
of periodicity (E-fields). Then the Maxwell system reduces to nz0

the scalar spectral problem The corresponding eigenmodes are guided in the dielectric

—Au = e(z)u (1) due to the total internal reflection.

This result shows that the subspectruimnof the air modes
where A = (w/c)%. Most of the results will be presented inshrinks to the spectrum of the Dirichlet Laplacian on the unit
terms of the spectral parametarrather than frequency. square, therefore becoming almost discrete and opening large
The reason is that some effects are better visible in termsgaps at exactly described locations. A completely different
A. On the other hand, it is easy to translate everything intehavior is observed in the second subspectsdrgenerated
the frequency language. by the dielectric modes. Namely, it splits into narrow bands

The asymptotic study started with a thorough consideratiseparated by narrow gaps, both of the asymptotic size
of the simplest square geometry of a 2-D PBG medium (Fig. $§6)~*. Fig. 2 represents schematically these two spectra.
undertaken in [12]-[14]. The medium is scaled to have period This theorem shows in particular that one can open an
1 in bothx andy directions. The dark areas have thicknesarbitrarily large number of spectral gaps Brwaves in high-
& <1 and are filled with a dielectri¢e > 1), while the light contrast square structures. Another interesting observation is
areas are filled with aife = 1). The square structure wasthat one can open gaps for arbitrarily long waves without
chosen for its simplicity with the hope that studying it onehanging the periodicity scale of the structure. The dieledric
can get better understanding of more complex geometries.modes, which are responsible for the subspectsunpresent
The asymptotic regime we are currently interested in the main obstacle for the gaps opening, forcing the gaps to
6 — 0 andeé — oc. One can argue that these asymptotibe small.
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Dirichlet-to-Neumann operator (D—N) on the graph Take
a function ¢(x) defined along the edges of the graph
Now take any of the compact fac€s and find the harmonic
function«; in €; that coincides withp on the boundary

—Au;(z) =0, z €y

wjlaq, = ¢.

Repeating this for each facg;, we obtain a collection of
harmonic functions.;. Due to the construction, the values of

Fia 3 ™ 5 and it faces). (b) The dislectric PBG - these functions match across the graph’s edges, while their
C(I)%'res.poga:j)ing ?O%Le:apgra?:;ﬂ. 'll'tﬁeadcsik é;.re(ag, of \i/idlt(; ?gglrgsent d?glagstrrlii normal derivatives do not match. Let us_nOW define a f_unc_tlon
with dielectric constant > 1. The white areas are the air bubbles wite= 1. %’ On the graph as the sum of all exterior normal derivatives
of all the functionsu;

(@) (b)

approximation by a separable exactly solvable model. This is
impossible for most geometries. So, one might wonder whether
it is possible to carry over a similar analysis for nonsquaigheren;are the exterior normal vectors &2;. We define the
geometries. This question was answered in [15], where muohN on the grapht as the operator
more general periodic structures of the “fattened graph” type
were studied. Consider a periodic graphon the plane that A — 1.
divides it into compact face@; [Fig. 3(a)]. Imagine that all its
edges are fattened to the widiHthe dark areas in Fig. 3(b)]
and filled with a dielectric with the dielectric constant- 1. 151 (28
The rest of the plane (the white faces) is filled with air. 2] [28]). -

We will consider now the asymptotic behavior of the _Theorem 3:[15] The spectrum of the operatag: coincides
spectrum of the® modes whens — 0 andeé — W1 > 0. Wlthhf[h(ihspectrum olf .theﬂp])robltlam (41‘)'th “bad” ¢
One can notice that while in the previous theorem we assumeJ IS theorem explains the origin of the “bad™ Spectrum
that W = 0, we now allow nonzero finite limits of6. This is asymptotically behaves as the spectruin of the D-N operator
a much more realistic assumption, since the valuesbahat Agﬂr]escaledtbx the srtgwa[{lhparar:?e}(eﬁ) do-diff ial”
are currently technologically feasible are of order of 1. € opéraloniy can be thought ofas a ‘pseudo-diiterentia

Theorem 1 shows that the sizes of bands and gaps of erator on the grapE_. When the graph is smooth (and n
“worst’ spectrumas are of order(es) L. It is natural then particular has no vertices or loose ends) the operatrin
before trying to analyze the spectrum, to zoom in on it' b ct is a first order pseudo-differential operator in technical
introducing a rescaled spectral paraméﬂar: (e6)A. Then ense. Its principal symbol i8[¢| (i.e., the symbol of the

the spectral problem (1) becomes operator2,/—d?/ds?, wheres is the arc length). Analogously,
in the multidimensional situation the operatby; is “almost”

—Au = (e8) ' De(z)u. (2) 2/=Ax, where—Agy is the Laplace—Beltrami operator. This

understanding is important for what follows. D—N operators

have been intensively studied recently, in particular due to

the needs of inverse problems (see [36], [37], and references
therein). The only thing different in the photonic situation

& = dz. . ; . .

(8. 9) /Z #(z) de is that the operatoAy, is a “two-sided” one, i.e., we solve

Theorem 2: (See details in [15]). Any finite part of the pirichlet problems on both sides of an edge and then take the

spectrumo (in terms of the parameteP) of the problem jump of normal derivatives from both sides, while in standard

(2) converges to the corresponding part of the spectrum of ﬁ;l%nsiderations the Dirichlet problem i,s SP'Ved only on one
problem side, and then the exterior normal derivative at the boundary

is taken.

The proof of the cited theorem relies on possibility of an = Ou;
= zj: aﬂj

We will abbreviate this name to D-N. It is not hard to show
that Ay, is a self-adjoint operator oh?(%) (see, for instance,

Consider now the delta-functiai; supported by the graph,
i.e., for any compactly supported smooth functigfx)

—Au = D(bs + W 3)

The constant? = lim(e§)~! plays the role of a coupling lll. ANALYSIS OF THE ASYMPTOTIC MODEL

constant. Whet” = 0 the air and dielectric modes decouple. As we saw in the previous section, study of thin high-

In the latter case, the problem (3) reduces to the transmissigintrast dielectric structures leads to the spectral problem for

problem the operatony, on a periodic grapl in the plane. A thorough
—Au = Désu. 4) numerical and _analytic study of this operator was done in

[28] and [29]. Fig. 4 presents the spectrum computed for the

The natural domain for consideration of this spectral problesguare lattice graph formed by the lines= n andy = m

is the graphX. itself rather than the whole plane. In ordefn,m € Z) and also explains our graphing system. In this

to understand this we need to introduce the notion of thpécture the spectral axis is vertical. The first column represents
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We will now point out some other interesting features of
dispersion curves for different types of dielectric structures.
Let us start with disconnected dielectric media. For instance,
let us take a circle of a radius less than 0.5 and repeat it
periodically with the period grougZ?. One can view the
resulting disconnected grapfi as a model of the structure
of thin optically dense dielectric pipes in the air. A similar

@ procedure can be applied to a segment, cross, square, etc.,
] each time yielding a disconnected graph The numerical
Dispersion Density F‘ Spectrum study of all of these and of other disconnected structures
fda“(”"s of states 1 \ D gpectral produced dispersion relations with band functions that flatten
| 31, Axi very fast with the growing band number, leading to spectra
Cv Al 307 that consist of very narrow spectral bands and thus are almost
e S b | | 297 discrete for high frequencies. Besides, the spectra appear to
287 be asymptotically periodic. Fig. 5 represents the results of the
w —=| j(: calculation for the disconnected structure composed of disjoint
zj~ circles of radii 0.2.
—  — ~_ 431 .. The reason why the bands flatten like this is that at higher
. frequencies the modes related to different “pipes” essentially
I N e | - decouple and become significantly localized. Thus the spec-
2w trum starts looking numerically like it consists of infinitely
J\ =l 20% degenerate eigenvalues (which in fact are extremely narrow
——~ = e
Ihm We present now an analytic result that explains this spectral
5\ =1 L‘): behavior. It holds in any dimension, not necessarily in 2-D.
ne Let S be a smooth closed hypersurfaceRfl [a single circle
T~~~ =1, in the Fig. 5(a)] andC = Y, (5 +n) be the disjoint union
J\ - | 3: of the integer shifts ofS‘.ng)ne can define the D—N operator
,”:_: Ax, on X as this was done above fdr= 2._
T~~~ 31, Theorem 4 [28] Let{D,} C R be_ the (discrete) spectrum
or of the (positive) Laplace—Beltrami operaterAs on the
— _— ~_3=1 .. surfaceS. Then there exists a sequence of positive numbers
i pn — 0 such that the spectrum of the operathy; on X
T~~~ 3|, belongs to the union of intervals
T~
AL o(as) € 2VDs = 0.2V/D, + 0

3n

o~ | A |-
/——/\ -1 I [‘)” and each of these intervals contains a nonempty portion of
r X M I " o(Ax).

(b) In fact, if S is smooth, one can guarantee that< ¢, D,
for any p>0. The case whert is a circle can be solved
explicitly and shows that analyticity of probably implies
exponential decay op,,.
the graphs of several branches of the dispersion relationsTheorem 4 explains the “almost discrete” nature of the
D;(k) (we remind the reader that we use here the rescalggectrum and predicts its asymptotic location for disconnected
spectral parameteb = (e§)A = (e§) (w/c)? rather than the smooth structures. For instance, in the 2-D case, we conclude
frequencyw). The dispersion relation is graphed for the valuethat the spectrum at higher frequencies must concentrate
of the quasi-momenturk on the boundary of the triangle witharound valuesdrnL~!, where L is the length ofS. In
the verticesI'(0,0), X(r,0), and M(x,n) (the irreducible particular, for a circle of radiug this leads t@nR~*. These
Brillouin zone). The second column contains the graph olumbers are indicated along the spectral axis in the Fig. 5(b)
the density of states over the spectral axis. The third colurand one can see perfect agreement with the numerical results.
shows the bandgap structure of the spectrum. One can nofites also provides an explanation of the asymptotic periodicity
existence of many gaps (in fact, infinitely many of them) anof the spectrum in 2-D that was observed in numerics.
apparent asymptotic periodicity of the dispersion curves with We would like to mention that numerics shows a very fast
respect to the spectral paramefer(a feature which is hard convergence of the asymptotics claimed in the last theorem.
to catch looking at the graphs in terms of frequencies). TheSherefore, one can make rather accurate predictions about the
features can be explained and rigorously justified (see [28]kpectra using this theorem.

Fig. 4. (a) Square structure and (b) its spectrum.
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Fig. 5. (a) Disconnected structure of period 1 consisting of circles of radius
0.2 and (b) its spectrum. Fig. 6. (a) Connected circle structure of radii 0.25 and (b) its spectrum.

A very restrictive assumption is smoothness £f since of computations that show how the spectrum reacts to different
graphs that represent thin dielectric structures will normalgeometries. Consider for instance the same disconnected circle
have vertices and/or corners. One might expect that if instesitucture and add dielectric edges connecting the circles along
of circles we use squares of the same length, the asymptdtie symmetry axes of the structure. Fig. 6 represents the
nature of the spectrum will stay the same. However, numericaimputed dispersion relations and spectrum for this model.
tests show that this is not the case. The spectra look systépme can notice that some branches of the dispersion relation
atically shifted from the values calculated according to tHeecome practically flat, and the density of states shows high
formula 47nL~!. This effect is due to the singularities atdelta-type peaks at the corresponding locations. This most
vertices (corners), which require some special boundary cqmebably does not indicate presence of actual eigenvalues, but
ditions. These conditions will be discussed later in Section IVather of strong resonances.

Connected (and hence self-supporting) structures are cerk is interesting to look at the Floquet-Bloch eigenmodes
tainly the most interesting ones. The paper [28] contains resttlat correspond to these resonances. Fig. 7 represents a density
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structure.

The following theorem shows that the answer is probably
Fig. 7. Density plots of two “localized” eigenmodes for the connected circldegative.
structure. The modes apparently do not propagate along the dielectric edgeTheorem 5: [28] Let the spaceR?’ be tiled with unit cubes
connecting the circles. and X be the union of their surfaces. The spectrum of the
corresponding D—N operatats has only a finite number of
plot of a couple of such eigenmodes. What one can seeg@ps. Moreover, there are no gaps in the spectrum for the
that the wave is strongly localized at one circle (it is stuckalues of the spectral parametbr > 407.
in the loop), in spite of availability of the dielectric edges We conjecture that the number of gaps in the spectrum of
connecting different circles that allow the wave to propagatds is finite for any periodic hypersurface structuteC R4,
One can also observe that the frequencies at which these 3.
resonances occur coincide with a subset of the spectruni-et us address now the asymptotic problem with# 0
computed for the disconnected circle structure. This is not
a coincidence. One can show (the corresponding theorem

Is proven in [28]) that the eigenmodes of the d|sconnectTd this case, there is the dielectric-air coupling, and the

ircl r re th re antisymmetric with r R X
circle structure that are antisymmetric with respect to.bo roblem cannot be conveniently reduced to the grapi®ne
symmetry axes of the structure, lead to resonances in

o ; . of the ways one can handle this is to consider the auxiliary
connected structure. It is interesting to notice that exactly this .
oblem with two spectral parametetrsand D

type of doubly-antisymmetric eigenmodes (and correspondi%
flat bands) have recently been Qiscovered and used prgctically —Au — cu = Désiu (5)
in [24]. Similar resonant behavior was also observed in [28]
for several other geometries, including for instance the hoand then to intersect its spectrum in tfwe D)-plane with the
eycomb one. There is, however, no complete understandifige ¢ = W D. The computation of the spectrum was done by
of this effect. For instance, one can show both analyticalfixing ¢, using the Green’s function to rewrite the problem on
and numerically that these resonances do not occur in theand finally finding numerically the spectrum with respect
square geometry. It is not clear yet what differentiates this D. Doing so for many values af, one can recover the 2-D
geometry from those with resonances. The study of thesgectrum of the problem. Fig. 8 represents the results of such
resonances suggests that it is in principle conceivable dalculation for the square structure (i.e., formed by the lines
“almost localize” electromagnetic waves in a purely periodi¢ = n andy = m, m,n € Z). Similar studies have been done
PBG material with no impurities, just by using an appropriatfor other geometries as well. THe-axis is horizontal and the
geometry. Practical importance of such narrow bands fefaxis is vertical. The shaded areas show the 2-D spectrum
enhancement of spontaneous emission and lasing was shawd the inclined line i = D. One can see that the, D)-
in [5] and [24]. spectrum shows two distinct patterns. First of all, almost
The results of [28] show that there are often infinitely manyertical strips originate at = 0 from the bands of the spectrum
gaps in the spectrum of the D—N operatbg on a periodic of the D-N operator. Another set of narrowing strips goes
graph¥ in the plane. Is the same true for higher dimension$? horizontal direction. The horizontal lower edges of these

—Au = D(6s + W)u.
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strips indicate that at the corresponding valuescdhe D- situation. Namely, since the D—N operator is ‘almost” twice
spectrum of the problem (5) degenerates and covers the whible square root of the second derivative with respect to the
line. The two different patterns intersect the line= D over arc length—d?/ds?, it is clear that it is reasonable to consider
two different subspectra, which correspond to the subspectihe eigenvalue problem

a1 (horizontal strips) ands, (vertical strips), respectively. > 2

These are exactly the two subspectra that were discussed in _M - <B) ”
the previous section. The next result (applicable to a general ds? 2

“fattened graph” geometry) provides a simple criterion oflong each edge (or maybe
when the spectral degeneration observed at the straight edges

of the horizontal strips can occur. This can provide guidance (_1),”@ _ <B>2mu
for creating geometry in a way that eliminates or lifts the ds™m 2

horizontal pattern higher. . for some integerm). The question arises, however, what
Theorem 6: ([29]) The degeneration observed on the pigyoundary conditions at the vertices and corners one should
ture occurs at a levet if and only if _ use. Although the general answer is not known, some spe-
) cis in the spectrum of the Floquet Laplaciam™; = cja| geometries can be treated. Analysis developed in [29],
(—iV + k)? on the torus for some real value of the quasiyithough not being completely rigorous, provides an interesting
momentumé; _ ~and reliable heuristic technique. In order to understand the
ii) the graphX: belongs to the nodal set of an eigenfunctiogoyndary behavior of an eigenmode at a vertex or corner, one

¢ of —A corresponding to the eigenvalee zooms in on the vertex by applying the Mellin transform in the
radial directions. Then the problem can be reduced to studying

IV. ORDINARY DIFFERENTIAL EQUATIONS an interesting algebra of poles of analytic continuation of the

ON GRAPHS AND PBG MATERIALS resulting function. The spectral problem for the D—N operator

Problems in thin domains (fattened graphs or Surfacééll)ovides. a functioqal_ equation that can be used to study these
have been considered lately in several areas of mesosccpigularities. We will just present one of the results that can be
physics and in chemistry, mostly due to progress in nanoted@itained this way. The comp_lete cﬁscussmn will be provided in
nology and microelectronics. These are in particular studig&]- If one has a symmetric junction of three edges at a vertex
of circuits of thin semiconductor or superconducting strip@nd«; is the restriction of the function to thgth edge, then
models of organic molecules, and others (see, for instan8&’ analysis leads to the following conditions at the vertex:

[2], 3], [8]-[10], [18]-{20], [31]-[34]). In all these cases a 41 (0) = u(0) = u3(0)

natural asymptotic consideration was applied, which lead to dus 3_D -

differential problems on graphs (sometimes called “quantum Z d—’(O) = - <T cot 5)u(o). (6)
mechanics on graphs”). The eigenvalue problems that arise in je123

these studies usually look as follows: along each edge of (R jnteresting feature here (besides a funny trigonometric
graph one has the problem factor) is that the spectral parametf@ralso enters the bound-
ary conditions. Tests on the disconnected union of three-

2
_d_g =\ edge stars, honeycomb structures, and some other geometries
ds lead to an amazing agreement between the differential and
with “appropriate” boundary conditions at each vertex. pseudo-differential results. The problem (6) leads to simple

As we have indicated above, the operatos that arises algebraic equations and hence in many cases can be analyzed
when one studies thin high-contrast dielectrics, is a pseudocﬁf]alytically. For instance, the dispersion relations for (6) in the
ferential operator of order one, while in mesoscopic physi€gse of the honeycomb structure with the edge fizman be
one deals with differential operators of the second Ordép_un_d explicitly. Namely, one can derive_existence of a series
However, there sometimes exists an amazing possibility to @&-eigenvaluesD = 2n7 /I and of a series of nonflat band
duce the consideration to a much simpler ordinary differentifinctions given by
problem on the graph. The first indication of this is the case of o ,
smooth disconnected structures. Theorem 4 essentially redubegk) = T <7rn + 3
consideration of the operataks. to the simple differential

operator —d?/ds* (roughly speakingAs ~ 2,/—d?/ds?) 1 1 1k Ky
+ arcsiny/ = + . (N

and leads to the approximate formula~ 4nwx /L. However, 6" ke & g oS5 cos

the most interesting case of nonsmooth graphg not so

simple. The question is whether a statement analogous tdexistence of eigenvalues for a spectral problem in a purely
the Theorem 4 holds in the nonsmooth case. An attemptgeriodic medium is a highly unusual thing. One can also
use the formulaD = 4nx/L for nonsmooth disconnectedfind occurrence of eigenvalues in similar situations of peri-
structures (for instance, the structure of thin dielectric pipeslic meshes of quantum wires (a circumstance overlooked
of square cross section) leads to results that do not agmeprevious studies of such systems). Certainly, for actual
well with numerics. One can hope, however, that approprigdotonic situations (i.e., before going to the asymptotic limit)
boundary conditions at vertices and/or corners could fix thieese eigenvalues correspond to very flat bands and hence
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Fig. 9. (a) Honeycomb structure, (b) spectrum of the corresponding D—N operatnd (c) spectrum of the differential model.

to resonances. Fig. 9 presents the results of computing the V. How GoobD IS THE ASYMPTOTICS?

spectrum using the differential model (6) and the pseudo- . ) )

differential operato\s; for the honeycomb lattice in the plane. 1Ne asymptotic results that we discussed above are derived

One can see a striking agreement between them. The pictdfBger the assumptions that— 0 andeé — oo (or a little

differ a little bit for the lowest band functions, but otherwis&it less restrictive assumptiard — W =" >0). On the other

are practically identical. No rigorous justification of this effechand, the currently practically feasible valueséofnde are

is known. such thats6 ~ 1 (although in the acoustic case one can
Analytic formulas similar to (7) can be derived for som#geach much higher contrasts). The question arises whether the

other structures, for instance for the octagonal structure da&symptotic study can give any guidance for these values of

cussed in the next section. the parameters. A rather unexpected observation is that the
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Fig. 10. Octagonal structure.

25

Fig. 12. The same results as in Fig. 11 redrawn for the frequerg\2 ¢
instead ofA.

become even more impressive if one graphs the frequency
(in standard dimensionless units:/2x¢), as it is shown in

1 Fig. 12. The reader should take into account that Fig. 12
through Fig. 15 present results in terms of the frequency
rather thanA.

1 Comparison of actual and asymptotic calculations show that
asymptotic results have value even for the casé ©f0.1 and

e = 12. Consider the hexagonal structure shown in Fig. 3(a).
The length of a single edge was chosen to be one-third.
Consider now the dielectric structure in Fig. 3(b). We chose
Fig. 11. Asymptotic results (marked with<") and the actual computation the valuesé = 0.1 and e = 12. The reader should notice
(marked with ) for the octagonal structure. that this situation is very far from the asymptotic assumption
of a very thin dielectric with high-contrast, since the filling

asymptotic results (even whetiis assumed to tend to infinity) fraction of the dielectric is as high as 0.32, aafl = 1.2.
can give a good qualitative, and even some quantitative idEge explicit formulas (7) together with the corresponding
about the behavior of a several lower spectral bands. We pf@fmulas for the flat bands were applied to the graph of
to present a more detailed discussion of this matter elsewhdr§): 3(@) and simultaneously a direct numerical calculation
and now we just provide some examples. Consider for instari@S performed for the PBG material of Fig. 3(b). The results
the periodic geometry of octagons intertwined with squar€ POth computations are presented (in arbitrary frequency
with all edges of equal length (Fig. 10). We remind the readdPits) in Fig. 13. One notices that although the numerical
that the edges of the graphrepresent thin dielectric walls in Valués are not too close (albeit not extremely far off), the
the air. Fig. 11 represents the comparison of the computatidhé€rall pattern of the spectrum is captured by the formulas
of the dispersion relations using the asymptotic model (t#{&) very well for the first 9-10 bands. Numerical experiments
D-N operatorAs,) and computations performed with the finité’_‘"t‘h increasing the contrast to 30 and 100 while keeping the
element method developed in [4] for the similar structurdling fraction constant produce results tha}t shc_)w about the
with the dielectric walls of width 0.05 (relative to the periof@Me level of agreement. However, reducing simultaneously
of the structures) and of the dielectric constant=30. the value ofé one improves the agreement. Fig. 14 shows the
The asymptotic results are marked with™ and the actual '€Sults of similar calculations far = 0.05 ande = 30. Here,
ones with %.” One observes a perfect match for the firsthe filling fraction of the dlel_ectnc is only about 0.1_7. One can
three bands, some deviation for the fourth one, and the n&%€ that the overall pattern is represented well. This can also be

2
three bands more significantly distorted (albeit preserving th&ffecked as follows. One can rescale the values 5f(w/c)
qualitative geometric features). Taking into account that W & constant factor (about 1.2) in order to make the flat bands
used the asymptotic model withé — oo for the actual {##1}5 and 6 meet in both computations. Then one sees perfect

situation where=6 = 1.5, the agreement is very surprising.agreement of all other bands as well (Fig. 15).

It is clear that the asymptotic models can provide a good

guidance for understanding the spectral behavior. One should!-
also remember that in many cases the asymptotic model yield$So far, our discussion has been devoted to the case of
simple analytic formulas for dispersion relations. The resulfs-modes only. Consider now the behavior of the spectrum

0 _é._m‘:”"‘el@\ . . M - ST

0 2 4 6 8 10

AN ASYMPTOTIC MODEL FOR THE H-FIELDS IN 2-D
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Fig. 13. Dispersion curves(k) obtained by using the explicit formulas [7] Fig. 15. R2esults shown in Fig. 14 after rescaling the spectral parameter
(solid lines) and direct computations (dotted lines) for the hexagonal structdre= («/¢)* by a factor of 1.2.
of Fig. 3(b) withL = 1/3, 6 = 0.1, ande = 12.

Moreover,
1.0
| d(S; N [0,N],o N [0,N]) < Cy max{(g&)*l,s&?}
R e e e e L whered denotes the Hausdorff distance.
. s e ey, . - This theorem says that the spectrum of tHefields for
S AR R e —— -1 2 :
o e, small values ofe6)~* ande$= concentrates in a small vicinity
0.64" ' ERS = e UL of the discrete sef, and hence, large gaps at exactly known
el ettt locations open up. A more precise description of this result can
. ettt . be found in [12]. An additional observation made in [12] was
O.LN- . BEE that the eigenmodes have most of their energy concentrated
[Preeeeeesre, e in the air. We would also like to mention that the same
I — result holds for the problem (8) for the cubic geometry in
024 b three-dimensional (3-D) [12], where one can think of (8) as
describing acoustic rather than EM waves.
The paper [16] considers the asymptotics of Hefields
0L Ny in 2-D for arbitrary “fattened graph” geometry and under the

milder conditioné — 0, €6 — W~1>0. It is shown, in
particular, that the spectrum converges to the spectrum of the
following problem:

of H-polarized fields in thin high-contrast 2-D materials.

1ﬁ
Fig. 14. Results similar to the ones in Fig. 13 foe= 0.05 ands = 30.

For these fields the Maxwell system reduces to the spectral —Au = Au, zeR X%
problem [@} =0, z E€X
1 an
e(x) ®) W), zex 9)

an
where = (w/c)?. Let o be the spectrum of the problem (8). ,
The paper [12] describes the asymptotic limit of this spectruffere [(9u/dn)] and[«] stand for the jumps ofu/dn and
whenes — oo andes? — 0 for the square geometry shownof ., respectively, across andd/dn is the normal derivative
in Fig. 1. at srr_]o_oth points of:. NoFe th:_at th(_a surface term with the
Theorem 7:[12] Let N be an arbitrary positive number andc€fficienti¥” couples the fields in adjacent domaias When
W tends to zero, we arrive to the direct sum of the Neumann
S, = {7(2 (nf + ”§)|ﬂ - (nl,nz) c 72— } Laplacians in the domain€;, which agrees with the result
of the Theorem 7 derived in [12] for the square structure
be the spectrum of the Neumann Laplacian on the unit squaired W = 0. Additional analytic and numerical study of this
(which is the Wigner—Seitz cell of the considered geometrygsymptotic problem is still required. Some analogs of this
Then the Hausdorff distance between N [0, N] and asymptotic result for EM waves in 3-D will be presented in
S1 N [0,N] tends to zero whemsé — oo andes? — 0. [17].
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One should also mention the paper [22] devoted to thed] P. Exner, “Contact interactions on graph superlatticés Phys, vol.
asymptotic study of a high-contrast case without the assur%)i]

tion

1)

2)

3)

4)

5)

of thinness of the dielectric.

[12]
VII.

Rigorous asymptotic models for spectra of EM waves i3]
2-D thin high-contrast dielectrics are available.

These models allow discovery and study of new inteft4]
esting phenomena, including flat branches of dispersion
curves that can be used for spontaneous emission
hancement, gaps in the long wave regions, and asymp-
totic periodicity of the spectrum. (16]
The asymptotic results provide unexpectedly good quaiz
itative (and sometimes quantitative) description of the
spectral behavior for materials of finite width and conlt8l
trast.

In some cases very simple ordinary differential model&9]
can be derived that provide a good approximation ?50]
spectra. In these situations one can often obtain approx-
imate analytic formulas for the dispersion relations. [21]
The developed asymptotic results can be used in dif-
ferent ways. For instance, they provide some simpie2]
tools of fast estimates of spectral behavior and malf%,]
it possible to analyze some problems analytically rather
than purely numerically. They could also provide good
preconditioners for existing iterative numerical method
like for instance the ones developed in [4] and [7].

CONCLUSIONS
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