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The article presents a survey of mathematical problems, techniques and challenges arising in
thermoacoustic tomography and its sibling photoacoustic tomography.

1 Introduction

Computerized tomography has had a huge impact on medical diagnostics. Numerous
methods of tomographic medical imaging have been developed and are being developed
(e.g., the ‘standard’ X-ray, single-photon emission, positron emission, ultrasound, magnetic
resonance, electrical impedance, optical) [62,67,84-86]. The designers of these modalities
strive to increase the image resolution and contrast, and at the same time to reduce the
costs and negative health effects of these techniques. However, these goals are usually
rather contradictory. For instance, some cheap and safe methods with good contrast
(like optical or electrical impedance tomography) suffer from low resolution, while some
high-resolution methods (such as ultrasound imaging) often do not provide good contrast.
Recently researchers have been developing novel hybrid methods that combine different
physical types of signals, in the hope of alleviating the deficiencies of each of the
types, while taking advantage of their strengths. The most successful example of such
a combination is the thermoacoustic tomography (TAT)' [69, 70, 95]. Albeit not yet a
common feature in clinics, TAT scanners are actively researched, developed and already
manufactured, for instance by OptoSonics, Inc. (http://www.optosonics.com/), founded
by the pioneer of TAT, R. Kruger.

After a substantial effort, major breakthroughs have been achieved in the last few years
in the mathematical modeling of TAT. The aim of this article is to survey this recent
progress and to describe the relevant models, mathematical problems and reconstruction
procedures arising in TAT and to provide references to numerous research publications
on this topic.

I'TAT is also sometimes abbreviated as TCT, which stands for thermoacoustic computed tomo-
graphy. If instead of radio-frequency waves, laser beams are used to trigger the thermoacoustic
signal, the procedure is called photoacoustic (PAT) or optoacoustic (OAT) tomography.
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The main thrust of this text is towards mathematical methods; considerations of
the text length, as well as authors’ background, do not let us discuss in any detail
industrial and physical set-ups and parameters of the TAT technique and limitations
of the corresponding mathematical models. Fortunately, the excellent recent surveys by
M. Xu and L.-H. V. Wang [131] and by A. A. Oraevsky and A. A. Karabutov [96,97]
accomplish all of these tasks, and thus the reader is advised to consult with them for
all such issues (see also the recent textbook [126]). On the other hand, in spite of the
significant recent progress in mathematics of TAT, there is no comprehensive survey text
addressing in detail the relevant mathematical issues®, although the surveys [97,131] do
mention some mathematical reconstruction techniques.

The structure of the article is as follows: Section 2 contains a brief description of the
TAT procedure. Section 3 provides the mathematical formulation of the TAT problem. In
general, it is formulated as an inverse problem for the wave equation. However, in the
case of the constant sound speed, it can also be described in terms of a spherical mean
operator (a spherical analogue of the Radon transform). The section also contains a list of
natural questions to be addressed concerning this model. These issues are then addressed
one by one in the following sections. In particular, Section 4 discusses uniqueness of
reconstruction, i.e., the question of whether the data collected in TAT is sufficient for
recovery of the information of interest. Although, for all practical purposes this issue is
resolved in Corollary 2, we provide an additional discussion of unresolved uniqueness
problems, which are probably of more academic interest. Section 5 addresses inversion
formulas and algorithms. In Section 6 the effects of having only partial data are discussed.
Section 7 contains results concerning the so-called range conditions, i.c., the conditions
that all ideal data must satisfy. Section 8 provides additional remarks and discussions of
the issues raised in the previous sections, and is followed by a bibliography. Concerning
the latter, we mention that the engineering and biomedical literature on TAT is rather
vast and no attempt has been made in this text to create a comprehensive bibliography
of the topic from the engineering prospective. The references in [95, 96, 97, 121, 124, 131]
to a large extent fill this gap. We have, however, tried to present a sufficiently complete
review of the existing literature on mathematics of TAT.

2 Thermoacoustic tomography

In TAT, a short-duration electromagnetic (EM) pulse is sent through a biological object
(e.g., a woman’s breast in mammography) with the aim of triggering a thermoacoustic
response in the tissue. As explained in [131], the radiofrequency (RF) and the visible
light frequency ranges are currently considered to be the most suitable for this purpose.
Since mathematics works exactly the same way in both of these frequency ranges, we
will not make such a distinction and will discuss just ‘an EM pulse’. For example, in
Figure 1 a microwave pulse is assumed. In most cases the pulse is spatially wide, so
that the whole object is more or less uniformly irradiated. Some part of EM energy is

2Since the submission of this article, two surveys on various topics of mathematics of TAT
[41,105] and a special issue [64] have appeared. Two other surveys [5,40], also of a more restricted
nature, are forthcoming in [125].
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FiGURE 1. The TAT procedure.

absorbed throughout the object. The amount of energy absorbed at a location strongly
depends on the local biological properties of the cells. Oxygen saturation, concentration
of haemoglobin, density of the microvascular network (angiogenesis), ionic conductivity
and water content are among the parameters that influence the absorption strongly [131].
Thus, if the energy absorption distribution function f(x) were known, it would provide
a great diagnostic tool. For instance, it could be useful for detecting cancerous cells that
absorb several times more energy in the RF range than healthy ones [70,97,129, 131].
However, as an imaging tool neither RF waves nor visual light alone would provide
acceptable resolution. In the RF case, this is due to the long wavelength. One can use
shorter microwaves, but this will be at the expense of the penetration depth. In the optical
region, the problem is with the multiple scattering of light. So, a different mechanism, the
so-called photoacoustic effect [53,119,126,131], is used to image f(x). Namely, the EM
energy absorption results in thermoelastic expansion and thus in a pressure wave p(x,t)
(an ultrasound signal) that can be measured by transducers placed around the object. Now
one can attempt to recover the function f(x) (the image) from the measured data p(x,t).
Such a measuring scheme, utilizing two types of waves, brings about the high resolution of
the ultrasound diagnostics and the high contrast of EM waves. It overcomes the adverse
effect of the low contrast of ultrasound with respect to soft tissue. In fact, such a low
contrast is a good thing here, allowing one to assume in the first approximation that the
sound speed is constant. This often used approximation is not always appropriate, but it
is the most studied case at the moment. Later on in this text we will describe some initial
considerations of the variable sound speed case, following [4, 46,49, 65].

For this TAT method (and in particular, for the mathematical model described in the
next section) to work, several conditions must be met. For instance, the time duration
of the EM pulse must be shorter than the time it takes the sound wave to traverse the
smallest feature that needs to be reconstructed. The ultrasound detector must be able to
resolve the time scale of the duration of the EM pulse. On the other hand, the transducer
must be also able to detect much lower frequencies. Thus, one needs to have extra-wide-
band transducers, and these are currently available. One can find the technical discussion
of all these issues, for instance, in [97, 125,126, 131]. In this text we will assume that all
these conditions are met and thus the mathematical models described are applicable.

In the next section we present a mathematical description of the relation between f(x)
and p(x,t) (similar mathematical problems arise in sonar [81] and radar [90] imaging, as
well as in geophysics [31]).
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3 Mathematical model of TAT: Wave equation and the spherical mean transform
3.1 The wave equation model

We assume that the ultrasound speed at location x is equal to ¢(x). Then, modulo some
constant coefficients that we will assume all to be equal to 1, the pressure wave p(x,t)
satisfies the following problem for the standard wave equation [32, 36, 119, 129]:

D = CZ(X)AXps t 2 O,X € ]R3

p(x,0) = f(x), (3.1)
pt(xa 0) = 0

The goal is to find, using the data measured by transducers, the initial value f(x) at t=0
of the solution p(x, t).

In order to formalize what data is in fact measured, one needs to specify what kind of
transducers are used, as well as the geometry of the measurement. By the geometry of
the measurement we mean the distribution of locations of transducers used to collect the
data.

We briefly describe here the commonly considered measurement procedure, which uses
point detectors. Line and planar detectors have also been suggested (see Section 8.1.1). It
is too early to judge which one of them will become most successful, but the one using
point transducers has been more thoroughly studied mathematically and experimentally,
and thus will be mostly addressed in this article. In this case, the transducers are assumed
to be point-like, i.e., of sufficiently small dimension. A transducer at time ¢ measures the
average pressure over its surface at this time, which for the small size of the transducer can
be assumed to be just the value of p(y,t) at the location y of the transducer. Dimension
count shows immediately that in order to have enough data for reconstruction of the
function f(x), one needs to collect data from the transducers’ locations y running over
a surface § in R3. Thus, the data at the experimentalist’s disposal is the function g(y,t)
that coincides with the restriction of p(x,t) to the set of points y € S.

Taking into account that the measurements produce the values g(y,t) of the pressure
p(x,t) of (3.1) on S x R*, the set of equations (3.1) extends to become

pu = (x)4p, t=0,x € R3

p(x,0) = f(x),

pi(x,0) =0 (3.2)
py,t) =gy, 1), yeS xR

The problem now reduces to finding the initial value f(x) in (3.2) from the knowledge of
the lateral data g(x,t) (see Figure 2). A person familiar with partial differential equations
might suspect first that there is something wrong with this problem, since we seem to have
insufficient data for the recovery of the solution of the wave equation in a cylinder from
the lateral values alone. This, however, is an illusion, since in fact there is a significant
additional restriction: the solution holds in the whole space, not just inside the cylinder
S x R*. We will see soon that in most cases the data is sufficient for recovery of f(x).
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FIGURE 2. An illustration of (3.2).

3.2 Spherical mean model

We now introduce an alternative formulation of the problem that works in the constant
speed case only. We will assume that the units are chosen in such a way that ¢(x) = 1.
The known Poisson-Kirchhoff formula [28, Ch. VI, Section 13.2, Formula (15)] for the
solution of (3.1) gives

0
pix. 1) = az (H(Rf)(x. 1)), (3.3)
where
(Rf)(x,r) = y 1f(><+ry)dA(y) (3.4)
=
is the spherical mean operator applied to the function f(x), d4 is the normalized area
element on the unit sphere in R*? and a is a constant. Hence, knowledge of the function
g(x,t) for x€ S and all >0 essentially means knowledge of the spherical mean Rf(x,?)
at all points (x,t) € § x RT. One thus is led to studying the spherical mean operator
R : f — Rf and in particular its restriction Ry to the points x €S only (these are the
points where we place transducers):

Rsf(x,t) = f(x+ty)dA(y), xe€8,t=0. (3.5)
[yl=1
This explains why, in many works on TAT, the spherical mean operator has been the model
of choice. Although the (unrestricted) spherical mean operator has been studied rather
intensively and for a long time (e.g., [20, 28, 66]), its version Rg with the centres restricted to
a subset S appears to have been studied only since the early 1990s [1-14, 18, 30, 34, 35,37—
41,44,47,71,72,76,77,79-81,86,89,91,92,98-100, 104, 106, 107, 116, 137] and offers quite
a few new and often hard questions.
In what follows, we will alternate between these two (PDE and integral geometry)
interpretations of the TAT model, since each of them has its own advantages.

3.3 Main mathematical problems of TAT

We now formulate a typical list of problems one would like to address in order to
implement the TAT reconstruction.

(1) For which sets S € R? is the data collected by transducers placed along S sufficient
for unique reconstruction of f? In terms of the spherical mean operator, the question
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is whether Ry has zero kernel on an appropriate class of functions, say continuous
with compact support.

(2) If the data collected from S is sufficient, what are the relevant inversion formulas
and algorithms?

(3) How stable is the inversion?
(4) What happens if the data is ‘incomplete’?

(5) What is the space of all possible ‘ideal’ data g(t,y) collected on a surface S?
Mathematically (and in the constant sound speed case) this is the question of
describing the range of the operator Rg in appropriate function spaces. This question
might seem to be unusual (for instance, to people used to partial differential
equations), but in tomography the importance of knowing the range of Radon type
transforms is well known. Such information is used to improve inversion algorithms,
complete incomplete data, discover and compensate for certain data errors, etc. (e.g.,
[34,43-45,60-62, 85, 86,99, 135]).

4 Uniqueness of reconstruction

Many of the problems of interest to TAT can be formulated in any dimension d, although
the practical dimensions are only d = 3 and d = 2. We will consider an arbitrary dimension
d whenever appropriate.

Let S = RY be the set of locations of the transducers and f be a compactly supported
function (one can show that for purposes of uniqueness of reconstruction problem, one
can always assume that f is smooth [7]). Does the absence of the signal on the transducers,
ie., g(t,y)=0 for all t and y in S, imply that f =07 If the answer is a ‘yes,” we call S
a uniqueness set, otherwise a non-uniqueness set. In other words, in terms of TAT, the
uniqueness sets are those for which distributing transducers along them provides enough
data for unique reconstruction of the function f(x).

In terms of the wave equation, uniqueness sets are the sets of complete observability,
i.e., such that observing the motion on this set only, one gets enough information to
reconstruct the whole oscillation. In terms of the spherical mean operator, the question is
whether the equality Rgf = 0 implies that f = 0.

We will address this problem for the constant sound speed case first.

4.1 Constant speed case

As it has been discussed, the dimension count makes it clear that S must be (d — 1)-
dimensional, i.e., a surface in 3D or a curve in 2D. We will also see that most of
such surfaces are ‘good’, i.e., are uniqueness ones (or, in other words, provide enough
information for reconstruction). Thus, we should rather discuss the problem of describing
the ‘bad’, non-uniqueness sets. The following simple statement is very important and not
immediately obvious.

Lemma 1 [7,79,80,137] Any non-uniqueness set S is a set of zeros of a (non-trivial)
harmonic polynomial. In particular,
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(1) If there is no non-zero polynomial vanishing on S, then S is a uniqueness set.

(2) If there is no non-zero harmonic function vanishing on S, then S is a uniqueness set.

The proof of this lemma is very simple. It works under the assumption of exponential
decay of the function f(x), not necessarily of compactness of its support. It also introduces
some polynomials that play a significant role in the whole analysis of the spherical mean
operator Rg.

Let k = 0 be an integer. Consider the convolution

Oklx) = IxJ* * f(x) = / x = yI*f () dy. (4.1)

This is clearly a polynomial of degree at most 2k. Rewriting the integral in polar
coordinates centered at x and using radiality of |x — y|, one sees that Qx(x) is determined
if we know the values Rf(x,t) of the spherical mean of f centered at x:

Ok(x) = ca /00O RHIRE (x, 1) dt.

In particular, if Rgf = 0, then each polynomial Q; vanishes on S.

Another observation that is easy to justify is that if the function f is exponentially
decaying (e.g., is compactly supported), then if all polynomials Q) vanish identically, the
function itself must be equal to zero. (This is not necessarily true any more if f and its
derivatives decay only faster than any power, rather than exponentially.)

Thus, we conclude that if f is not identically equal to zero, then there is at least one
non-zero polynomial Q. Since, as we discussed, equality Rsf = 0 implies that Qk|s = 0,
we conclude that S must be algebraic.

Now notice the following easy to verify equality (with a non-zero constant cg):

AQk = ¢k Qk—1, (4.2)

where 4 is the Laplace operator. This implies that the lowest k non-zero polynomial Qy
is harmonic. Since Qk|s = 0, this proves the lemma.

Consider now the case when S is a closed (hyper-)surface (i.e., the boundary of a
bounded domain). Since, as it is well known, there is no non-zero harmonic function in
the domain that vanishes at the boundary (the spectrum of the Dirichlet Laplace operator
is strictly positive), we conclude that such S is a uniqueness set for harmonic polynomials.
Thus, we get the following important result.

Corollary 2 [7,71]  Any closed surface is a uniqueness set for the spherical mean Radon
transform.

An older alternative proof [71] of this corollary provides an additional insight into the
problem. We thus sketch it here. Let us assume for simplicity that the dimension d > 3
is odd (even dimensions require a little bit more work). Suppose that the closed surface
S remains stationary (nodal) for the oscillation described by (3.1). Since the oscillation
is unconstrained and the initial perturbation is compactly supported, after a finite time,
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FiGure 3. Coxeter cross Xy.

the interior of S will become stationary. On the other hand, we can think that S is fixed
(since it is not moving anyway). Then, the energy inside S must stay constant. This is the
contradiction that proves the statement of Corollary 2.

We will see in the next section that the same method works in some cases of variable
sound speed, providing the needed uniqueness of the reconstruction result.

This corollary resolves the uniqueness problems for most practically used geometries.
It fails, however, if f does not decay sufficiently fast (see [3], where it is shown in which
LP(IR?) classes of functions f(x) closed surfaces remain uniqueness sets).

It also provides uniqueness for some ‘limited data’ problems. For instance, if S is an
open (even tiny) piece of an analytic closed surface X, it suffices. Indeed, if it did not,
then it would be a part of an algebraic non-uniqueness surface. Uniqueness of analytic
continuation would show then that the whole X is a non-uniqueness set, which we know
to be incorrect. This result, however, does not say that it would be practical to reconstruct
using observations from a tiny S. We will see later that this would not lead to a satisfactory
reconstruction, due to instabilities.

A geometry sometimes used is the planar one, i.e., detectors are placed along a plane S
(line in 2D). In this case, there is no uniqueness of reconstruction when the sound speed
is constant. Indeed, if f(x) is odd with respect to S, then clearly all measured data g(t, y)
will vanish. However, it is well known [28, 66] that functions even with respect to S can
be recovered. What saves the day in TAT is that the object to be imaged is located on
one side of S. Then, extending f(x) as an even function with respect to S, one can still
recover it from the data.

Although for all practical purposes the uniqueness of reconstruction problem is essen-
tially resolved by Corollary 2, the complete understanding of uniqueness problem has
not been achieved yet. Thus, we include below some known theoretical results and open
problems.

4.1.1 Non-uniqueness sets in R?

In this section we follow the results and exposition of [7,79,80] in discussing uniqueness
sets in 2D. What are simple examples of non-uniqueness sets? As we have already
mentioned, any line S (or a hyperplane in higher dimensions) is a non-uniqueness set,
since any function f odd with respect to S will clearly produce no signal: Rgf = 0.
Analogously, consider a Coxeter system Xy of N lines passing through a point and
forming equal angles (see Figure 3).
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FIGURE 4. A picture of a 3D non-uniqueness set.

Choosing the intersection point as the pole and expanding functions into Fourier
series with respect to the polar angle, it is easy to discover the existence of an infinite
dimensional space of functions that are odd with respect to each of the N lines. Thus,
such a cross Xy is also a non-uniqueness set. Less obviously, one can use the infinite
dimensional freedom just mentioned to add any finite set @ of points still preserving non-
uniqueness. The following major and very non-trivial result was conjectured in [79, 80]
and proven in [7]. It shows that there are no other bad sets S besides the ones we have just
discovered.

Theorem 3 A set S = IR? is a non-uniqueness set for the spherical mean transform in the
space of compactly supported functions, if and only if

ScwiyUuao,

where X is a Coxeter system of lines, w is a rigid motion of the plane and ® is a finite set.

A sketch of a rather intricate proof of this result is provided in Section 8.2.

4.1.2 Higher dimensions

Here we present a believable conjecture of how the result should look in higher dimensions
(see Fig. 4).

Conjecture 4 [7] A set S = RY is a non-uniqueness set if and only if S € wX U &, where
X is the surface of zeros of a homogeneous harmonic polynomial, w is a rigid motion of R¢
and @ is an algebraic surface of dimension at most d — 2.

Th progress toward proving this conjecture has been slow, although some partial cases
have been treated [1-12]. For example, in some cases one can prove that S is a ruled
surface (i.e., consists of lines), but proving that these lines (rules) pass through a common
point remains a challenge. It is known, though, that both the zero sets of homogeneous
harmonic polynomials and algebraic subsets of dimension at most d—2 are non-uniqueness
sets [2,7], and thus one should avoid using them as placements of transducers for TAT.

4.1.3 Relations to other areas of analysis

The problem of injectivity of Rg has relations to a wide variety of areas of analysis (see
[1,7] for many examples). In particular, the following interpretation is important:
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Theorem 5 [7,71] The following statements are equivalent:

(1) S = RY is a non-uniqueness set for the spherical mean operator.

(2) S is a nodal set for the wave equation, i.e., there exists a non-zero compactly supported
f such that the solution of the wave propagation problem

o%u
o = A
u(x,0) = 0,

u(x,0) = f(x)
vanishes on S for any moment of time.

(3) S is a nodal set for the heat equation, i.e., there exists a non-zero compactly supported
f such that the solution of the problem

ou
P = Au,
u(x,0) = f(x)

vanishes on S for any moment of time.

The interpretation in terms of the wave equation provides important PDE tools and
insights, which have led to a recent progress [12,38] (although it has not led yet to a
complete alternative proof of Theorem 3). The rough idea, originally introduced in [38], is
that if S is a nodal set, then it might be considered as the fixed boundary. In this case, the
signals must go around S. However, in fact, there is no obstacle, so signals can propagate
along straight lines. Thus, in order to avoid discrepancies in arrival times, S must be very
special. One can find details in [12] and in [38].

4.2 Uniqueness in the case of a variable sound speed

It is shown in [40, Theorem 4] that uniqueness of reconstruction also holds in the case of a
smoothly varying (strictly positive) sound speed, if the source function f(x) is completely
surrounded by the observation surface S (in other words, if there is no ultrasound signal
coming from outside of S). The proof uses the celebrated unique continuation result by
D. Tataru [120].

One can also establish uniqueness of reconstruction in the case where the source is not
necessarily completely surrounded by S. However, here we need to impose an additional
non-trapping condition on the sound speed. We assume that the sound speed is strictly
positive, ¢(x) > ¢ > 0, and such that ¢(x) — 1 has compact support, i.e., ¢(x) = 1 for a
large x.
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Consider the Hamiltonian system in ]Ri”é with the Hamiltonian H = Cz(Tx)\ﬂz:
X = 5% = g
<= = 3V (¢(x)) 1€]

X|i=0 = X0, &li=0 = &o.

The solutions of this system are called bicharacteristics and their projections into IRY are
rays.

We will assume that the following non-trapping condition holds: all rays (with & + 0)
tend to infinity when t — oo.

Theorem 6 [4] Under the non-trapping conditions formulated above, compactly suppor-
ted function f(x) is uniquely determined by the data g measured on S for all times. (No
assumption of f being supported inside S is imposed.)

One should mention that ray trapping can occur for some sound speed profiles. For
instance, if ¢(x) = |x| for some range r; < |x| < rp, then there are rays trapped in
this spherical shell. We are not sure what happens in this case to the uniqueness of
reconstruction statement of Theorem 6 and inversion formula of Theorem 7.

5 Reconstruction: Formulas and examples

Here we will address the procedures of actual reconstruction of the source f(x) from the
data g(t, y) measured by transducers.

5.1 Constant sound speed

We assume here that the sound speed is constant and normalized to be equal to 1.

5.1.1 Inversion formulas

Before we move to our case of interest (which is spheres centered on a closed surface S
surrounding the object to be imaged), we briefly refer to related but somewhat different
work. Namely, the problem of recovering functions from integrals over spheres centered
on a (hyper)plane S has attracted a lot of attention over the years. Although, as mentioned
before, there is no uniqueness in this case (functions odd with respect to S are annihilated),
even functions can be recovered. Thus also functions supported on one side of the plane
can be as well, by means of their even extension. Many explicit inversion formulas and
procedures have been obtained for this situation [18,30,35,44,47,68,86,89,98,99,111,
112,115]. In particular, Fourier transform methods are useful here. We will not provide
any details here, since this acquisition geometry does not seem very useful. In particular,
this is due to ‘invisibility’ of some parts of the interfaces (see Section 6) which arises
from truncating the plane. The same problem is encountered with some other unbounded
acquisition surfaces, such as a surface of an ‘infinitely’ long cylinder.



202 P. Kuchment and L. Kunyansky

Thus, it is more practical to place transducers along a closed surface surrounding the
object. The simplest surface of this type is a sphere.

5.1.2 Fourier expansion methods

Let us assume that S is the unit sphere in R”. We would like to reconstruct a function f(x)
supported inside S from the known values of its spherical integrals g(y,r) with centres on
S:

g(y,r) = fy+ro)yrdo, yeS.
Snfl

The first inversion procedures for the case of spherical acquisition were described in [91]
in 2D and in [92] in 3D. These solutions were obtained by harmonic decomposition of the
measured data and the sought function, and by equating coefficients of the corresponding
Fourier series (a la A. Cormack’s method for the X-ray CT).

In particular, the 2D algorithm of [91] is based on the Fourier decomposition of f and
g in angular variables:

FG) =" fulp)e™®,  x = (pcos(p), psin(p)) (5.1)

gy(0),r) = gu(r)e™’, y = (Rcos(0), Rsin(0)).

Following [91] we consider the Hankel transform g,,;(4) of the Fourier coefficients g,,(r)
(divided by 2mr)
A R gn(r)
s = [ atrbitin) e = ot (52 ). (52)
0 r
To simplify the presentation we introduce the convolution G,(4, y) of the sought function
with the Bessel function Jo(4|x — y|),

Gotu) = [ Pl =yl (53)
One can notice that g, ;(1) are the Fourier coefficients of G,(4,y) in 0:
A 1 " —im0
gmy(4) = I Gy(4,y)e" do. (5:4)
T Jo

Now the coefficients f,,(p) can be recovered from g,(r) by application of the addition
theorem for the Bessel function Jo(4|x — y|):

JoQlx = yl) = Tu(AlxIm(Aly))e =0, (5.5)

Indeed, by substituting equations (5.1) and (5.5) into (5.3), and (5.3) into (5.4) one obtains

2R
Emy(4) = 2nJ,u(4|R]) A () m(p)p dp = A u(f(p)),
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where J,, is the m-th order Hankel transform. Since the latter transform is self-invertible,
the coefficients f,,(p) can be recovered by the following formula:

_ gm,J(;“) _ 1 gm(r)
1ot =00 [ 05| = (e [ 5 ) >0

which is the main result of [91]. The function f(x) can now be reconstructed by summing
series (5.1).

Note that the above method requires a division of the Hankel transform of the measured
data by Bessel functions J,, that have infinitely many zeros. Theoretically, there is no
problem; the Hankel transform %0[%”7{:)] has to have zeros that would cancel those in
the denominator. However, since the measured data always contain some error, the exact
cancellation is not likely to happen, and one needs a sophisticated regularization scheme
to keep the total error bounded.

This problem can be avoided by replacing in (5.2) the Bessel function Jy by the Hankel
function H(()l):

2R
o) = / en(H(r) dr.
0

The addition theorem for H(()l)()v|x — y|) takes the form
*© .
HOfx = y) =3 JuQIx)HD (Aly)e ™00,
—0o0

and by proceeding as before one can obtain the following formula for f,,(p):

1 2R
=Hy | ——— m H\Y(r)dr | .
<H,(nl)(/1R|),/0 g (I") 0 ( r) I")

Unlike J,,, Hankel functions H{! () do not have zeros for any real values of t and therefore
problems with division by zeros do not arise in this amended version of the method [91].

This derivation can be repeated in 3D, with the exponentials ¢*? replaced by the
spherical harmonics, and with cylindrical Bessel functions replaced by their spherical
counterparts. By doing this one will arrive at the Fourier series method of [92]. Our use
of Hankel function H(()l) above is similar to the way the authors of [92] utilized spherical
Hankel function hg“ to avoid the divisions by zero.

gm,H(;‘)

fm(p) = %m [I‘Mm

5.1.3 Filtered backprojection methods

The most popular way of inverting Radon transform for tomography purposes is by using
filtered backprojection-type formulas, which involve filtration in Fourier domain followed
(or preceded) by a backprojection. In the case of the set of spheres centred on a closed
surface (e.g., a sphere) S, one expects such a formula to involve a filtration with respect
to the radius variable and then some integration over the set of spheres passing through
the point of interest. For quite a while, no such formula had been discovered, and even its
existence had been questioned. This did not prevent practitioners from the reconstructions,
since good approximate inversion formulas (parametrices) could be developed, followed
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by an iterative improvement of the reconstruction (see, e.g. the reconstruction procedures
n [128,129, 132-134], and especially [106, 107]).

The first set of exact inversion formulas of filtered backprojection type was discovered
in [38]. These formulas were obtained only in odd dimensions. Several different variations
of such formulas (different in terms of the exact order of the filtration and backprojection
steps) were developed. Let us denote by g(p,r) = r>Rsf the spherical integral, rather than
the average, of f. Then various versions of the 3D inversion formulas that reconstruct a
function f(x) supported inside S from its spherical mean data Rgf read

g [ ey =) dAw),

1 &2
109 =gz [ (Gevnn) |, a0 (57)

. 1 d (1d gyt
f(x)__811:2R/aB(dt(tdt t >>

Recently, analogous formulas were obtained for even dimensions in [37]. Denoting by g,
as before the spherical integrals (rather than averages) of f, the formulas of [37] in 2D
look as follows:

flx) =

dA(y).

t=ly—x]

1 2R
109 = 52 [ [ e0 log(e = x = Py dvay) (58)

or

2nR
A different set of explicit inversion formulas that work in arbitrary dimensions was
presented in [77]:

2R a
100 =gux [ [ 5 (5550 ) o - = yPydeaicn. 659)

109 = ey iy [ nh.lx = ). (5.10)

Here

2R
h(y,t) = /]R+ {Y(Az)(/o J(A)g(y, t/)dt/)

2R
—J(/lt)( / Y(/lt’)g(y,t/)dt/ﬂ;?”—301/1, (5.11)
0
Jﬂ — n
0= M Y0 =T,

Juj2—1(t) and Y, »_;(t) are respectively the Bessel and Neumann functions of order n/2—1,
and n(y) is the vector of exterior normal to 0B.

In 2D equations (5.10), (5.11) can be simplified to yield the following reconstruction
formula:

1 ) 2R , 1 ,
709 = =5gdiv [ a0 | [ et i e | dion
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A similar simplification is also possible in 3D resulting in the formula

) 1d gy,
flx) = édlv/w n(y)( a8l ”) dA(®). (5.12)

tdt t

t=[y—x]|

Equation (5.12) is equivalent to one of the formulas derived in [130] for the 3D case. It is
interesting to notice that the ‘universal’ formula of [130] holds for all geometries when the
backprojection-type formulas are known: spherical, cylindrical and planar. It is not very
likely that such explicit formulas would be available for any closed surfaces S different
from spheres (see a related discussion in [15,31]).

5.1.4 Series solutions for arbitrary geometries

Although, as we have just mentioned, we do not expect such explicit formulas to be
derived for non-spherical closed surfaces S, there is, however, a different approach [78]
that theoretically works for any closed S and that is practically useful in some non-
spherical geometries.

Let 42 and u,(x) be the eigenvalues and normalized eigenfunctions of the Dirichlet
Laplacian —4 on the interior Q of a closed surface S:

Auy(x) + 22 un(x) =0, x€Q, Q<R (5.13)
um(x) =0, x€8,

] 2 = / (o) dx = 1.
Q

As before, we would like to reconstruct a compactly supported function f(x) from the
known values of its spherical integrals g(y,r) with centres on S:

gw.r)= [ fy+roy"tdo, yeSs.
(Onfl
We notice that u,,(x) is the solution of the Dirichlet problem for the Helmholtz equation
with zero boundary conditions and the wave number 4,,, and thus it admits the Helmholtz
representation

0
Un(X) = /m D2, (I = YDz um(y) ds(y),  x € £, (5.14)

where @, (|x—y|) is a free-space rotationally invariant Green’s function of the Helmholtz
equation (5.13).

The eigenfunctions {u,(x)}; form an orthonormal basis in Ly(2). Therefore, f(x) can
be represented by the series

FO) =" i (x) (5.15)

m=0

With
= , d .
O = /Qun(x)f(x) X
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Since f(x) € C, series (5.15) converges pointwise. A reconstruction formula of «,, and
thus of f(x), will result if we substitute representation (5.14) into (5.15) and interchange
the order of integration. Indeed, after a brief calculation we will get

0
oy = /Q n()f (x) dx = /a (5 0) ) AA(), (5.16)
where
1(v.7) = / ®,(1x — ¥)f (x) dx. (5.17)
Q

Certainly, the need to know the spectrum and eigenfunctions of the Dirichlet Laplacian
imposes a severe constraint on the surface S. However, there are simple cases when the
eigenfunctions are well known, and fast summation formulas for the corresponding series
are available. Such is the case of a cubic measuring surface S (see [78]); the eigenfunctions
u,, are products of sine functions:

8 . mmixy . TmMaXp; . TM3X3
= —5 sin n sin ,
R R R R

Um(X) (5.18)

where m = (my,my, m3), my,my,m3 € N, and the eigenvalues are easily found as well:
Jm = w2 |m|*/R2. (5.19)

Sum (5.15) is just a regular 3D Fourier sine series easily computable by application
of the Fast Fourier Sine transform algorithm. The algorithmic trick that allows one
to calculate the coefficients o, quickly consists in first computing integrals (5.17) on
a uniform mesh in A. This is easily done by a 1D Fast Fourier Cosine transform
algorithm, with &,(t) = cos(4t)/t. The normal derivatives of u,(x) are also products of
sine functions, this time 2D ones. This, in turn, permits rapid evaluation of the integrals
fagil(y’ )v)%um(y) dA(x) for each mesh value of 4, and for each one of the six faces
0Q;,i=1,...,6, of the cube. Finally, the computation of «, using equation (5.16) reduces
to the interpolation in the spectral parameter 4, since the integrals in the right-hand side
of this equation have been computed for the mesh values of this parameter (not for
Am). Due to the oscillatory nature of the integrals (5.17) a low-order interpolation here
would lead to inaccurate reconstructions. Luckily, however, these integrals are analytic
functions of the parameter 4 (due to the finite support of g). Hence, high-order polynomial
interpolation is applicable, and numerics yields very good results.

The algorithm we just described requires ¢/(m* logm) floating point operations if the
reconstruction is to be performed on an m x m x m Cartesian grid, from comparably
discretized data measured on a cubic surface. In practical terms, it yields reconstructions in
the matter of several seconds on grids with total number of nods exceeding a million [78].

5.1.5 Time reversal (backpropagation) methods

In the constant speed case, the following approach is possible in 3D [38]: due to the
validity of the Huygens’ principle (i.e., the signal escapes from any bounded domain in
finite time), the pressure p(t, x) inside S will become equal to zero for any time T larger
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FIGURE 5. A mathematical phantom in 3D (left) and its reconstruction using an analytic inversion
formula.

than the time required to cross the domain (i.e., time that it takes the sound to move
along the diameter of S, which for ¢ = 1 equals the diameter). Thus, one can impose zero
conditions on p(t,x) for t = T and solve the wave equation (3.2) back in time, using the
measured data g as the boundary values. The solution of this well-posed problem at t = 0
gives the desired source function f(x). Such methods have been successfully implemented
[25].

Although in 2D or in presence of sound speed variations Huygens’ principle does not
hold any more, and thus the signal theoretically will stay forever, one can find good
approximate solutions using a similar approach [4,46,49]; see discussions of the variable
speed case later.

5.1.6 Examples of reconstructions and additional remarks about the inversion formulas

It is worth noting that although formulas (5.7)—(5.8) and (5.10)—(5.12) will yield identical
results when applied to functions that can be represented as the spherical mean Radon
transform of a function supported inside S, they are in general not equivalent when
applied to functions with larger supports. Simple examples (e.g., of f being the char-
acteristic set of a large ball containing S) show that these two types of formulas
provide different reconstructions. They also are not equivalent on data that contain
errors.

It is well known that different analytic inversion formulas in tomography can behave
differently in numerical implementation (e.g., in terms of their stability). However, nu-
merical implementation seems to show that the analytic (backprojection type) formulas
(5.7)—(5.12), in spite of them being not equivalent on data that involve errors, work equally
well. See, for example, the results of an analytic formula reconstruction in 3D shown in
Figure 5.

An interesting observation is that backprojection formulas (5.7)—(5.12) do not recon-
struct the function f correctly inside the surface S, if f has support reaching outside S.
For instance, applying the reconstruction formulas to the function Rg(yx<3) leads to an
incorrect reconstruction of the value of f = y <3 inside S = {|x| < 1}. (Here by yy we
denote the characteristic function of the set V, ie., it takes the value 1 in V and zero
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FIGURE 6. A perturbed reconstruction due to presence of two additional balls outside S (not
shown in the picture).

FIGURE 7. In the phantom shown on the left, most disks are located outside the square acquisition
surface S indicated by the dotted line. This does not perturb the reconstruction inside S (right).

outside. So, yx<3 is the characteristic function of the ball of radius 3 centered at the
origin.)

As another example, if one adds to the phantom shown in Figure 5 two balls to the
right of the surrounding sphere S, this leads to strong artifacts, as seen in Figure 6.

What is the reason for such a distortion? If one does not know in advance that f has
support inside S, the backprojection formulas shown before use insufficient information
to recover a function with a larger support, and thus uniqueness of reconstruction is lost.
Then the formulas misinterpret the data, wrongly assuming that they came from a function
supported inside S and thus reconstructing the function incorrectly. The backprojection
formulas make significant use of the assumption of f being supported inside S and also
of the time derivative of the pressure vanishing at time ¢t = 0. It is not clear whether such
formulas are possible without these assumptions.

Notice that the series reconstruction of the preceding section is free of such problem.
For example, the reconstruction shown in Figure 7 confirms this.

The reason of such robustness of the series reconstructions is that the only assumption
they use is a sufficiently fast decay of the solution (pressure) inside S. This condition
holds, for instance, when f has a compact support (not necessarily surrounded by the
observation surface S) and when the sound speed satisfies a non-trapping condition (see
the next section), e.g., is constant. See [46] for this discussion.
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5.2 Reconstruction in the variable speed case

We will assume here that the sound speed c¢(x) is smooth, positive, constant for a large x
and non-trapping. Although most analytic techniques we described above do not work in
the variable speed case, some formulas can be derived and algorithms can be designed.
This work is at an early stage and the results described hereafter most surely can and will
be improved.

5.2.1 ‘Analytic’ inversions

Let us denote by Q the interior of the observation surface S, i.e., the area where the object
to be imaged is located. Consider in @ the operator A = —c*(x)4 with zero Dirichlet
conditions on the boundary S = 0Q. This operator is self-adjoint, if considered in the
weighted space L2(Q;c¢ %(x)).

We also denote by E the operator of harmonic extension, which transforms a function
¢ on S to a harmonic function on © which coincides with ¢ on S.

The following result provides a formula for reconstructing f from the data g:

Theorem 7 [4] The function f(x) in (3.2) can be reconstructed in Q2 as follows:

o0

f(x) = (Eglimo) — / A7 sin (45 E(ga)(x, 7) d. (5.20)

0

The validity of this result hinges upon decay estimates for the solution (so-called local
energy decay [33, 122, 123]), which hold under the non-trapping condition. These estimates
guarantee a qualified decay of the solution p(t, x) inside any bounded region, e.g., in Q,
when time ¢ increases. In odd dimensions decay is exponential, but only polynomial in
even dimensions. The decay can be used instead of Huygens’ principle to solve the wave
equation backwards, starting at infinite time. This leads to the formula (5.20).

Due to functions of the operator 4 being involved, it is not that clear how explicit and
practical this formula can be made. For instance, it would be interesting to see whether
one can derive from (5.20) a backprojection inversion formula for the case of a constant
sound speed and S being a sphere (we have already seen that such formulas are known).

5.2.2 Backpropagation

The decay at large values of time can be used as follows: for a sufficiently large T, one
can assume that the solution is practically zero at t = T. Thus, imposing zero initial
conditions at t = T and solving in the reverse time direction, one arrives at t = 0 to an
approximation of f(x). Numerical experiments [46,49] show that this works even under
worst of circumstances, in 2D and with a trapping sound speed.

5.2.3 Eigenfunction expansions

One natural way to try to use the formula (5.20) is to use the eigenfunction expansion of
the operator 4 in Q (assuming that such expansion is known). This immediately leads to
the following result:
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Theorem 8 Under the same conditions on the sound speed as before, function f(x) can be
reconstructed inside Q from the data g in (3.2), as the following L*(B)-convergent series:

F) =" frwpn(x), (521)
k
where the Fourier coefficients fi can be recovered using one of the following formulas:
fu= 720 =5 [ sinGungiodr
0

fr = 2 2g(0) + 22 / cos (At)g)(t) dt, or (5.22)
0

fi=—i! / sin (A t)gr(t) dt = = ! / / sin (At)g(x, t)%(x) dx dt,
0 0 S

and
0
@)= [ glun T dx
s v
Here v denotes the external normal to S.

One notices that this is a generalization to the variable sound speed case of the
expansion method of [78], discussed in Section 5.1.4. An interesting feature is that, unlike
in [78], we do not need to know the whole space Green’s function for 4 (which is certainly
not known). However, it is not clear yet how feasible numerical implementation of this
approach could be.

6 Partial data: ‘Visible’ and ‘invisible’ singularities

Uniqueness of reconstruction does not imply practical recoverability, since the reconstruc-
tion procedure might be severely unstable. This is well known to be the case, for instance,
in incomplete data situations in X-ray tomography, and even for complete data problems
in some imaging modalities, such as the electrical impedance tomography [72, 76, 85, 86].

In order to describe the results below, we need to explain the notion of the wave front
set WF(f) of a function f(x). This set carries detailed information on singularities of
f(x). It consists of pairs (x, &) of a point x in space and a wave vector (Fourier domain
variable) & =+ 0. It is easier to say what it means that a point (xo, &y) is not in the wave
front set W F(f). This means that one can smoothly cut off f to zero at a small distance
from xq in such a way that the Fourier transform q/ﬁf (&) of the resulting function ¢(x)f(x)
decays faster than any power of ¢ in directions that are close to the direction of &;. We
remind the reader that if this Fourier transform decays that way in all directions, then
f(x) is smooth near the point xg. So, the wave front set consists of pairs (xg, o) such
that f is not smooth near x¢, and &, indicates why it is not: the Fourier transform does
not decay well in this direction. For instance, if f(x) consists of two smooth pieces joined
non-smoothly across a smooth interface X, then W F(f) contains pairs (x, £) such that x
is in X and ¢ is normal to X at x. One can find simple introduction to the notions of
microlocal analysis, such as the wave front set, for instance in [118].
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Ficure 8. Effect of incomplete data: the phantom (left) and its incomplete data reconstruction.
The transducers were located along a 180° circular arc (the left half of a large circle surrounding
the squares).

Analysis done in [109] for the Radon transform case® showed which parts of the wave
front (and thus singularities) of a function f can be recovered from its partial X-ray data.
An analogue of this result also holds for the spherical mean transform Rg [81] (see also
[134,135] for a practical discussion). We formulate it below in an imprecise form (see [81]
for precise formulation).

Theorem 9 [81] A wave front set point (x,&) of f is ‘invisible’ (i.e., is not stably recov-
erable from Rsf ), unless there is a circle (sphere in higher dimensions) centred on the
observation surface S, passing through x, and normal to £ at this point.

As we have already mentioned, this result does not exactly hold the way it is formulated
and needs to include some precise conditions (see [81, Theorem 3]). The statement is, for
instance, correct if S is a smooth hypersurface and the support of f lies on one side of
the tangent plane to S at the center of the sphere mentioned in the theorem.

Talking about jump singularities only (i.e., interfaces between smooth regions inside the
object to be imaged), this result says that in order for a piece of the interface to be stably
recoverable (dubbed ‘visible’), one should have for each point of this interface a sphere
centered at S and tangent to the interface at this point. In other words, if at a point x of
an interface L there is no detector located along the normal line to L at this point, this
part of the interface will be mandatorily blurred in the reconstructed image. The reason is
that if all spheres of integration are transversal to the interface, the integration smooths
off the singularity, and therefore its recovery becomes highly unstable. Numerically, one
has to deal with inversion of a matrix with exponentially fast decaying singular values,
or with filtration with a filter that grows super-polynomially with the frequency. Figure 8
shows an example of an incomplete data reconstruction from spherical mean data. One
sees clearly the effect of disappearance of the parts of the boundaries that are not touched
tangentially by circles centred at transducers’ locations. A useful notion is the one of a
detection region, i.e., the region where for any point x any line passing through x also
passes through a detector location. For instance, if S is a spherical cap, the detection
region will be the convex hull of the cup (if S is a half-sphere, the detection region is
the corresponding half-ball). If the object f to be imaged is contained entirely inside the

3See a somewhat more limited related result in [113].
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FIGURE 9. The arcs where the detectors are located are shown with solid line. Dotted lines indicate
the locations where detectors are not being placed. The shaded regions are the detection domains.

detection region, there will be no blurring of its singularities, and in fact the object can
be stably imaged. Figure 9 shows the 2D detection regions (shaded) when S is a single
arc of a circle and when it is the union of three arcs.

One should mention that the blurring due to ‘invisibility’ cannot be overcome, no
matter which inversion algorithm is used, unless some additional information about the
object is known and incorporated (as, for instance, in [127]), or the physical set-up of the
measurements is changed (e.g., in [29] mirrors are used to reflect back to the transducers
the waves that would have been otherwise unaccounted for).

The half-sphere problem, important for breast imaging, has in particular attracted a lot
of attention. Even if the object is inside the detection region (half-ball), the reconstructions,
although not suffering from blurring, show deterioration in intensity of the image. Various
partial solutions have been suggested: better approximate inverses, corrective coefficients,
numerical minimization, using range conditions for recovering the missing data, etc. (e.g.,
[16, 17, 19, 104]). A recent work in progress (L. Kunyansky, personal communication,
January 2008) shows promise for good reconstructions in this case.

7 Range conditions

As already mentioned, the space of functions g(t,y) that could arise as exact data
measured by transducers (i.e., the range of the data) is very small (of infinite codimension
in the spaces of all functions of ¢t > 0,y € §). Knowing this space (range) is useful
for many theoretical and practical purposes (reconstruction algorithms, error corrections,
incomplete data completion, etc.), and thus has attracted a lot of attention (e.g., [34,43—
45,60,61,72,74-76,82,85-87,99, 110].

For instance, for the standard Radon transform

f) > g0 = [ gdxol =1L

the range conditions on g(s, w) are

(1) evenness: g(—s,—w) = g(s, )
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FiGURE 10. An illustration to Theorem 10.

(2) moment conditions: for any integer k > 0, the kth moment

Gi(w) :/ skg(a),s) ds
—o0
extends from the unit circle of vectors @ to a homogeneous polynomial of degree k
in w.

The evenness condition is obviously necessary and is kind of ‘trivial’. It seems that the only
non-trivial conditions are the moment ones. However, here the standard Radon transform
misleads us, as it often happens. In fact, for more general transforms of Radon type it
is often easy (or easier) to find analogues of the moment conditions, while analogues of
the evenness conditions are often elusive (see [72,74,75, 85, 86,93] devoted to the case of
SPECT (single-photon emission tomography)). The same happens in TAT.

Let us deal first with the case of a constant sound speed, when one can think of the
spherical mean transform Ry instead of the wave equation model. An analogue of the
moment conditions was already present implicitly (without saying that these were range
conditions) in [7,79,80] and explicitly formulated as such in [104]. Indeed, our discussion
in Section 4 of the polynomials Q; provides the following conditions of moment type:

Moment conditions [7,79,80,104] on data g(p,r) = Rsf(p,r) look as follows: for any
integer k = 0, the moment

o0
Miw) = [ g dr
0
can be extended from S to a (non-homogeneous) polynomial Qi (x) of degree at most 2k.

These conditions, however, are incomplete, and in fact infinitely many others, which
play the role of an analogue of evenness, need to be added.

Complete range descriptions for Rg when S is a circle in 2D were discovered in [13] and
then in odd dimensions in [39]. They were then extended to any dimension and interpreted
in several different ways in [6]. These conditions happen to be intimately related to PDEs
and spectral theory.

In order to describe these conditions, we need to introduce some notation. Let B be
the unit ball in R, S the unit sphere and C the cylinder B x [0,2] (see Figure 10).
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We introduce the spherical mean operator Rg as before:

Rsf(x,t) = f(x+ty)dA(y),x € S.
[yI=1

Several different range descriptions for Ry were provided in [6], out of which we only
show a few.

Theorem 10 [6] The following three statements are equivalent:
(1) The function g € CP(S x [0,2]) is representable as Rgf for some f € Ci°(B). (In
other words, g represents an ideal (free of errors) set of TAT data.)
(2) (a) The moment conditions are satisfied.

(b) Let —i> be any eigenvalue of the Laplace operator in B with zero Dirichlet
conditions and v, be the corresponding eigenfunction. Then the following ortho-
gonality condition is satisfied:

| ety e dxde = )
§x[0.2]

Here jy(z) = ¢ J‘;(,,Z) is the so-called spherical Bessel function.

(3) (a) The moment conditions are satisfied.
(b) Let g(x,4) = [ g(x, t)jn/z,l(it)t”_l dt. Then, for any m € Z, the m-th spherical
harmonic term g,(x,2) of g(x,A) vanishes at all zeros 2 + 0 of the Bessel
Sunction Jyqy0_1(2).

Remark 11 [6]

(1) In odd dimensions, moment conditions are not necessary, and thus conditions 2(b)
or 3(b) suffice. (A similar earlier result was established for a related transform in
(391)

(2) The range conditions (2) of the previous theorem are also necessary when S is the
boundary of any bounded domain, not necessarily a sphere.

(3) An analogue of these conditions can be derived for a variable sound speed (without
non-trapping conditions imposed).

8 Concluding remarks
8.1 Variations of the TAT procedure
8.1.1 Planar and linear transducers

Assuming that transducers are point-like is clearly an approximation, and in fact a trans-
ducer measures the average pressure over its area. It has been rightfully claimed that the
point approximation for transducers should lead to some blurring in the reconstructions.
This, as well as intricacies of reconstructions from the data obtained by point transducers,



Mathematics of thermoacoustic tomography 215

triggered recent proposals for different types of transducers (see [23,24, 54-59, 101, 102]).
In these papers, it was suggested to use either planar or line detectors.

In the first case [55], the detectors are assumed to be large and planar, ideally assumed
to be approximations of infinite planes that are placed tangentially to a sphere containing
the object. Thus, the data one collects is the integrals of the pressure over these planes,
for all values of ¢t > 0. If one takes the standard 3D Radon transform of the pressure
p(x, t) with respect to x:

P(x,t)— q(s,t,w) = / p(x,t)dA(x),

X W=s

where dA is the surface measure and o is a unit vector in IR3, this is well known to
reduce the 3D Laplace operator 4, to the second derivative 8> /ds* [34,43-45, 60, 61], and
thus the 3D wave equation to the string vibration problem. The measured data provide
the boundary conditions for this problem. The initial conditions in (3.1) mean evenness
with respect to time, and thus the standard d’Alambert formula leads to the immediate
realization that the measured data is just the 3D Radon transform of f(x). Thus, the
reconstruction boils down to the well-known inversion formulas for the Radon transform.

Another proposal [23,24,54,56,57,101,102] is to use line detectors that provide line
integrals of the pressure p(x,t). Such detectors can be implemented optically, using either
Fabry-Perot [24], or Mach-Zehnder [102] interferometers.

Suppose that the object is surrounded by a surface that is rotation-invariant with
respect to the z-axis. It is suggested to place the line detectors perpendicular to the z-axis
and tangential to the surface. The same consideration as above then shows that after
the 2D Radon (or X-ray, which in 2D is the same) transform in each plane orthogonal
to z-axis, the 3D wave equation converts into the 2D one for the Radon data. The
measurements provide the boundary data. Thus, the reconstruction boils down to solving
a 2D problem similar to the one in the case of point detectors, and then inverting the 2D
Radon transform.

Due to the recent nature of these two projects, it appears to be too early to judge
which one will be superior in the end. For instance, it is not clear beforehand, whether
the approximation of infinite size (length, area) of the linear or planar detectors works
better than the zero dimension approximation for point detectors. Further developments
will resolve these questions, but probably each type of the detectors will find its niche.

8.1.2 Direct imaging techniques

Some direct imaging techniques have been suggested, which might not require mathemat-
ical reconstructions. See, for instance, [88] about an acoustic lens system.

8.1.3 Using contrast agents

Contrast agents to improve TAT imaging have been developed (e.g., [27]).
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8.1.4 Passive thermoacoustic imaging

The TAT model we have considered can be called ‘active thermoacoustic tomography’,
due to the set-up when the practitioner creates the signal. There has been some recent
development of the ‘passive thermoacoustic tomography’, where the thermoacoustic signal
is used to image the temperature sources present inside the body. One can find a survey
of this area in [103].

8.2 Uniqueness
8.2.1 Sketch of the proof of Theorem 10

We provide here a brief outline of the rather technical proof of Theorem 10.

Suppose that f is compactly supported, not identically zero, and such that Rgf = 0.
Our previous considerations show that one can assume that S is an algebraic curve (not
a straight line) that is contained in the set of zeros of a non-trivial harmonic polynomial.
Now one touches the boundary of the support of f from outside by a circle centered on
S. Then microlocal analysis of the operator Rg (which happens to be an analytic Fourier
Integral Operator (FIO) [21,48,50-52,73,108]) shows that, due to the equality Rgf = 0,
at the tangency point the vector co-normal to the sphere should not belong to the analytic
wave front of f (microlocal regularity of solutions of Rgf = 0). This, for instance, can
be extracted from the results of [117]. On the other hand, a theorem by Hormander and
Kashiwara [63, Theorem 8.5.6] shows that this vector must be in the analytic wave front
set, since f = 0 on one side of the sphere (a microlocal version of uniqueness of analytic
continuation). This way, one gets a contradiction. Unfortunately, the life is not so easy,
and the proof sketched above does not go through smoothly, due to possible cancellation
of wave fronts at different tangency points. Then one has to involve the geometry of zeros
of harmonic polynomials [42] to exclude the possibility of such a cancellation.

Thus, the proof uses microlocal analysis and geometry of zeros of harmonic polynomials.
Both these tools have their limitations. For instance, the microlocal approach (at least,
in the form it is used in [7]) does not allow considerations of non-compactly supported
functions. Thus, the validity of the theorem for arbitrarily fast decaying, but not compactly
supported, functions is still not established, although it most certainly holds. On the
other hand, the geometric part does not work that well in dimensions larger than 2.
Development of new approaches is apparently needed in order to overcome these hurdles.
A much simpler PDE approach has emerged recently [38] (see also [12] and the next
section), although its achievements have been limited so far.

8.2.2 Some open problems concerning uniqueness

As already mentioned, one can consider the practical problems about uniqueness resolved.
However, the mathematical understanding of the uniqueness problem for the restricted
spherical mean operators Ry is still unsatisfactory. Here are some questions that still await
their resolution:

(1) Describe uniqueness sets in dimensions larger than 2 (prove Conjecture 4). Recent
limited progress as well as variations on this theme can be found in [1-12].
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(2) Prove Theorem 3 without using microlocal and harmonic polynomial tools.

(3) Prove Theorem 3 on uniqueness sets S under the condition of sufficiently fast decay
(rather than compactness of support) of the function. Very little is known for the
case of functions without compact support. The main known result is of [3], which
describes for which values of 1 < p < oo the result of Corollary 2 holds for f € L?:

Theorem 12 [3] Let S be the boundary of a bounded domain in RY and f € LP(RY) such
that Rgf = 0. If p < 2d/(d — 1), then f =0 (and thus S is injectivity set for this space).
This fails for any p > 2d/(d — 1).

8.3 Inversion

Although closed form (backprojection type) inversion formulas are available now for the
cases of S being a plane (and object on one side from it), a cylinder and a sphere, there
is still some mystery surrounding this issue.

(1) Can one write a backprojection-type inversion formula in the case of the constant
sound speed for a closed surface S which is not a sphere? We suspect that the
answer to this question is negative (see also related discussion in [15,31]).

(2) The inversion formulas for S being a sphere assume that the object to be imaged is
inside S. One can check on simplest examples that if the support of the function f(x)
reaches outside S, the inversion formulas do not reconstruct the function correctly
even inside of S. See [5,46] for a discussion. Do backprojection-type formulas exist
that do not have this deficiency?

(3) L. Gelfand’s school of integral geometry has developed a marvellous machinery of
the so-called k operator, which provides a general approach to inversion and range
descriptions for transforms of Radon type [43,44]. In particular, it has been applied
to the case of integration of various collections (‘complexes’) of spheres in [44,47].
This consideration seems to suggest that one should not expect explicit closed form
inversion formulas for Rg, even when S is a sphere. We, however, know that such
formulas have been discovered [38,77]. This apparent controversy has not been
resolved.

(4) Can one derive any more explicit analytic formulas from (5.20)?

(5) Can the series expansion formulas of Theorem 8 be efficiently implemented ?

It has been suggested [15,26] to use in the TAT problem not only the values of the
pressure measured by transducers on the observation surface S, but its normal derivative
to S as well. If one knows both, then taking Fourier transform in the time variable and
using the whole space Green’s function for the Helmholtz equation leads immediately to
a reconstruction formula for the solution (which seems to be much simpler than what is
proposed in [26]). The problem is that this normal derivative is not measured by TAT
devices. Under some circumstances (e.g., when there are no sources of ultrasound outside
S), one can prove the theoretical possibility of recovering the missing normal derivative.
In rare cases (planar, cylindrical or spherical surface S), when involvement of the normal
derivative can be eliminated (e.g., [15, 31]), this might lead to feasible inversion algorithms,
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but in these cases, explicit and nicely implementable analytic inversion formulas are already
available. So, jury is still out on the issue of plausibility of this procedure.

8.4 Stability

Stability of inversion when S is a sphere surrounding the support of f(x) is the same
as for the standard Radon transform, as the results of [100] and the second statement
of Theorem 11 show. However, if the support reaches outside, although Corollary 2 still
guarantees uniqueness of reconstruction, stability (at least for the parts outside S) is gone.
Indeed, Theorem 9 shows that some parts of singularities of f outside S will not be stably
‘visible.

8.5 Range

As Theorem 9 states, the range conditions 2 and 3 of Theorem 10 are necessary also for
non-spherical closed surfaces S and for functions with support outside S. They, however,
are not expected to be sufficient, since Theorem 9 indicates that one might expect non-
closed ranges in some cases. The same applies for non-constant sound speed case.

8.6 Sound speed recovery

A question that has started attracting attention recently is the one of simultaneous
recovery from TAT data of the sound speed c(x) and the object f. Clearly, one needs to
worry about the recovery of the speed first. Only first steps in this direction have been
taken. For instance, in [136], the problem is treated numerically with encouraging results.
However, even the question of whether the sound speed is uniquely determined by TAT
data has not been resolved. So far, it is known that if the speed is constant and f is
supported strictly inside S, the speed is uniquely determined by the measured data [46].
It seems reasonable to try to use the range conditions of Theorem 10 to recover the
sound speed. These conditions contain information of two types: the support conditions
and an infinite series of orthogonality conditions. One wonders whether the orthogonality
conditions help with the recovery of the speed. Although we do not know the complete
answer to this question, even for constant speed the situation is not trivial. One can
show that orthogonality conditions alone (without support conditions) do not uniquely
determine the constant sound speed [46]. On the other hand, there is some kind of local
uniqueness [46].

8.7 Attenuation effects

In all the models discussed so far in this article, attenuation of ultrasound has been
neglected. It seems that this important TAT feature has not yet been sufficiently studied.
See [22,83,114] for this issue and additional references.
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