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Abstract. Exterior inverse problem for the circular means transform (CMT)
arises in the intravascular photoacoustic imaging (IVPA), in the intravascular

ultrasound imaging (IVUS), as well as in radar and sonar. The reduction of

the IPVA to the CMT is quite straightforward. As shown in the paper, in
IVUS the circular means can be recovered from measurements by solving a

certain Volterra integral equation. Thus, a tomography reconstruction in both

modalities requires solving the exterior problem for the CMT.
Numerical solution of this problem usually is not attempted due to the

presence of “invisible” wavefronts, which results in severe instability of the

reconstruction. The novel inversion algorithm proposed in this paper yields
a stable partial reconstruction: it reproduces the “visible” part of the image

and blurs the “invisible” part. If the image contains little or no invisible
wavefronts (as frequently happens in the IVPA and IVUS) the reconstruction

is quantitatively accurate. The presented numerical simulations demonstrate

the feasibility of tomography-like reconstruction in these modalities.

Introduction. Mathematical models of various imaging modalities are based on
the circular means transform (CMT), which maps a compactly supported function
of two variables to its integrals along a two-dimensional family of circles. Some ex-
amples of such imaging techniques include thermo- and photo-acoustic tomography,
ultrasound reflection tomography, sonar and radar imaging. Under certain reason-
able assumptions, the problem of image reconstruction in all these procedures can
be reduced to the inversion of the CMT, i.e. the reconstruction of the unknown
image function from its integrals along circles (e.g. see [9, 12, 13, 5, 15, 21], as well
as Section 1 here). The choice of the family of integration circles (and, in particular,
their location with respect to the support of the image function) depends on the
setup of the imaging device.

Typically, the centers of integration circles correspond to the locations of trans-
ducers recording the physical signals (acoustic or electromagnetic waves) coming
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from the imaging object. As a result, these centers are limited to some discrete
locations distributed along a curve, which we call a data acquisition curve. There
are abundant results about the inversion of CMT for the so-called interior problem,
arising when the data acquisition curve surrounds the support of the image function
(e.g. see [10] and the references there). However only limited results are available
for the exterior problem, where the support of the image function lies outside of
that curve, or the interior/exterior problem with the support partially inside and
partially outside of that curve (e.g. see [2] and the references there).

Some of the applications for the interior/exterior problem are radar and sonar
imaging ([13, 5]). However, our present work is mostly motivated by the recent ad-
vances in intravascular ultrasound imaging (IVUS) and intravascular photoacoustic
imaging (IVPA) [7, 16, 18, 17, 20]. The measuring device in these modalities is a
thin catheter with a set of embedded ultrasound transducers. The catheter is in-
serted in a blood vessel and records ultrasound waves coming from the surrounding
tissue. In IVUS, the transducer first generates an outgoing ultrasound impulse and
then switches to the listening mode and records the wave reflected by the tissue. In
IVPA the acoustic waves are created by the photoacoustic effect: a short pulse of an
infrared laser heats up the tissue that, in turn, expands and generates an outgoing
acoustic wave.

To the best of our knowledge, in IVUS and IVPA a tomographic reconstruction
currently is not attempted. Instead, a crude image is reconstructed by superimpos-
ing the incoming signal with the directional information. One of the goals of this
paper is to show that, by utilizing the equipment and measuring techniques sim-
ilar to those currently used in IVUS and IVPA, one can reconstruct qualitatively
(and sometimes even quantitatively) correct images of certain physical properties
of biological tissue. As discussed below, in IVPA the image reconstruction problem
reduces to the inversion of the CMT by considerations well known in the standard
photoacoustic tomography. The situation in IVUS is more complicated: since the
reflected wave depends on the speed of sound one tries to recover, the inverse prob-
lem is non-linear (unlike that of IVPA). Since in soft tissues variations of the speed
of sound are not very large, one can try to linearize the problem using the Born
approximation. In Section 2 we use this approach and show that in this case the cir-
cular integrals of the speed of sound are related to the measurements by a Volterra
integral equation (in time) whose kernel is given by a certain integral expression.
We analyze properties of the kernel and show that this integral equation can be
stably solved (by means of successive iterations or by linear algebra techniques) to
recover the circular means. This reduces the reconstruction problem, again, to the
inversion of the CMT.

The exterior inverse problem for the CMT has received so far very little attention
in the literature. The main culprit here is the well-known ill-posedness of this
problem. In order for a material interface to be “visible” under the CMT, the
normal to the interface should intersect the surface supporting the transducers (in
our case, the catheter). It is clear that in a generic exterior problem not all interfaces
are visible, and therefore accurate and stable reconstruction of material properties
is not possible. However, in the intravascular imaging the walls of blood of vessels
mostly run in the visible directions, roughly parallel to the surface of the catheter
(see, for example, [18] for good images of cross-sections of aorta). As our numerical
simulations show (see Section 3), when invisible interfaces are absent, a properly
regularized algorithm can stably reconstruct a quantitatively correct image. If the
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invisible interfaces are present, they will appear blurred and the corresponding
part of the image will not be reconstructed correctly. These numerical experiments
suggest the feasibility of tomography-like reconstruction in IVPA and IVUS, which
can be obtained by the techniques proposed here.

The rest of the paper is organized as follows: In Section 1 we discuss an ex-
act inversion formula for the CMT in the exterior and interior/exterior problem.
We then present an algorithm based on that formula for the approximate recon-
struction of a function from its circular means. In Section 2 we show that, under
Born approximation, the inverse problem for IVUS can be reduced to the inver-
sion of the CMT by solving a Volterra integral equation with a continuous kernel.
Section 3 presents results of numerical simulations demonstrating the work of the
reconstructions techniques proposed in the previous sections.

1. Exterior/interior problem for the circular means transform.

1.1. Formulation of the inverse problem in IVPA. It is not difficult to re-
duce the inverse problem arising in IVPA to the inversion of the CMT. In fact, a
very similar problem arises in the photoacoustic tomography with integrating line
detectors, and the derivation presented below can be found in the corresponding
literature (see, for example [4]).

Let us assume that the acoustic wave is measured by infinitely long transducers
placed on the surface of a cylindrical catheter of radius R0 and parallel to the
(vertical) axis of the catheter. We will assume for simplicity that the speed of sound
within the catheter coincides with the constant speed of sound in the surrounding
tissue. (The constant speed approximation is frequently made in the problems of
photo- and thermoacoustic tomography in soft tissue.) Without loss of generality
this speed of sound then can be assumed to be 1. The electromagnetic energy of
the incoming laser pulse is absorbed by the tissue, which leads to thermoelastic
expansion and generation of an acoustic wave. An excess pressure p(t,x) solves the
initial value problem for the wave equation in R3:

∆p =
∂2p

∂t2
, x = (x1, x2, x3) ∈ R3, t ∈ (0,∞),

p(0,x) = F (x),
∂p(0,x)

∂t
= 0,

where initial pressure F (x) is determined by the properties of the tissue; this func-
tion carries important biological information and is the object of our interest. It
is well known that the integrals of p(t,x) along any selected direction solve the 2D
wave equation. We, in particular, will consider the integrals u(t, x) in the direction
parallel to transducers

u(t, x) =

∫
R

p(t,x)dx3.

These integrals satisfy the following 2D initial value problem (IVP)

(1)

{
∆u = ∂2u

∂t2 , x= (x1, x2) ∈ R2, t ∈ (0,∞),

u(0, x) = f(x), ∂u(0,x)
∂t = 0,

where

f(x) =

∫
R

F (x)dx3.
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A transducer passing through the point z = (z1, z2) ∈ R2 (or, correspondingly,
through the point (z1,z2, 0) in R3) measures the time series u(t, z) for t ∈ (0,∞).
Since the transducers cover the surface of the catheter, such measurements are done
for all z lying on the circle of radius R0 centered at the origin in R2. Ideally, we
would like to reconstruct F (x) from the measurements u(t, z). However, since the
transducers are infinitely long and integrate the data along straight lines, there is
not enough data to reconstruct F (x). Instead, our goal is to reconstruct f(x).

Solution of the IVP (1) can be represented with the help of the Green’s function
G2D(t, x) of the two-dimensional wave equation in R2 (describing the outgoing wave)

G2D(t, x) = Φ

(
t,
√
x21 + x22

)
, x = (x1, x2) ∈ R2\Ω, t ∈ R,(2)

Φ (t, s) =
H (t, s)

2π
√
t2 − s2

,(3)

where H(t, s) is the Heaviside function equal to 1 for t > s and equal to 0 otherwise.
The well-known Kirchhoff formula [19] yields

u(t, z) =
∂

∂t

∫
R2

f(x)G2D(t, x− z)dx =
∂

∂t

∫
R2

f(x+ z)G2D(t, x)dx

=
∂

∂t

∞∫
0

Φ (t, r)

r ∫
S1

f(z + ry)dy

 dr,
where the term in the brackets represents the circular integrals g(z, r) of f(x):

g(z, r) ≡ r
∫
S1

f(z + ry)dy.

Taking into account equations (2) and (3) one obtains

(4) u(t, z) =
1

2π

∂

∂t

t∫
0

g(z, r)

2π
√
t2 − r2

dr

if t > r, otherwise u(t, z) = 0. Equation (4) is one of the versions of the well-known,
explicitly invertible Abel transform (see [4] or [8] Section 4.3); for every transducer
(for every z with |z| = R0) function g(z, r) can be reconstructed by the following
formula:

g(z, r) = 4r

r∫
0

u(t, z)

2π
√
r2 − t2

dt.

This solves the problem of finding circular integrals g(z, r) (or, equivalently, circular

means g(z,r)
2π ) from the measurements u(t, z).

Next, we develop an algorithm for the approximate reconstruction of a function
from its circular means (or circular integrals) in 2D. The centers of the integration
circles lie on the circle S0 of radius R0 centered at the origin O, as shown in Figure 1.
The function f(x) is supported within a larger concentric circle of radius R1 > R0. It
will be (approximately) reconstructed from the circular integrals g(z, r) with centers
z = z(R0, ϕ) of the integration circles sampling the whole circle S0, i.e. ϕ ∈ [0, 2π];
the radii r of the integration circles cover the interval [0, R0 +R1]. In other words,
we consider an exterior/interior problem for the circular means Radon transform.
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Figure 1. Acquisition geometry and “invisible” directions

The exterior problem for this transform is known to be ill-posed. In particular,
some wavefronts in the exterior of the circle S0 are not “visible”, i.e. there are
no integration circles passing through the corresponding points orthogonally to the
wavefront directions.

In the presence of “invisible” wavefronts not only the fronts but the whole image
cannot be stably reconstructed (e.g. see [14, 21] and the references there). An ex-
ample of such a wavefront passing through a point p is shown in Figure 1. Here, the
shaded area shows the directions of invisible singularities at point P . In particular,
if the function has a jump discontinuity across interface I shown in the figure, then
it can not be stably recovered from the circular means.

Since an arbitrary function has all possible wavefronts, including the invisible
ones, the general exterior (or interior/exterior) problem can only be solved approx-
imately. The algorithm we present below stably reconstructs theoretically visible
wavefronts and blurs the invisible ones.

1.2. Image reconstruction from the circular means. We start by computing
the Hankel transform ĝ(z, λ) of g(z, r)/r:

ĝ(z, λ) =

∞∫
0

J0(λr)g(z, r)dr(5)

=

∫
R2

f(z + y)J0(λ|y|)dy =

∫
R2

f(x)J0(λ|x− z|)dx.(6)

The next step is to substitute into (6) the following expression representing the
well-known addition theorem (Thm. 2.10 in [6]) for J0 :

J0(λ|z(R0, ϕ)− x(r, θ)|) =

∞∑
n=−∞

J|n|(λR0)einϕJ|n|(λr)e
−inθ,(7)

x = (r cos θ, r sin θ), z = R0(cosϕ, sinϕ).

Since the series in (7) converges absolutely and uniformly we obtain

ĝ(z(R0, ϕ), λ) =

=

2π∫
0

R0+R1∫
0

f(x(r, θ))

∞∑
n=−∞

J|n|(λR0)einϕJ|n|(λr)e
−inθrdrdθ

Inverse Problems and Imaging Volume 8, No. 2 (2014), 339–359



344 Gaik Ambartsoumian and Leonid Kunyansky

=

∞∑
n=−∞

J|n|(λR0)einϕ
R0+R1∫
0

 2π∫
0

f(x(r, θ))e−inθdθ

 J|n|(λr)rdr.(8)

Let us expand both ĝ(z(R0, ϕ), λ) and f(x(r, θ)) in the Fourier series with respect
to the angular variables:

f(x(r, θ)) =

∞∑
k=−∞

fk(r)eikθ, fk(r) =
1

2π

2π∫
0

e−ikθf(x(r, θ))dθ,(9)

ĝ(z(R0, ϕ), λ) =

∞∑
l=−∞

ĝl(λ)eilϕ, ĝl(λ) =
1

2π

2π∫
0

e−ilφĝ(z(R0, ϕ), λ)dϕ.(10)

Then, by substituting (8) into the second equation in (10) one obtains

(11) ĝl(λ) = 2πJ|l|(λR0)

∞∫
0

rfl(r)J|l|(λr)dr, l ∈ Z.

Let us formally divide equation (11) by J|l|(λR0) (a discussion of this step follows
below). We obtain the following equation

(12) Fl(λ) =

∞∫
0

rfl(r)J|l|(λr)dr

where

(13) Fl(λ) ≡ ĝl(λ)

2πJ|l|(λR0)
.

The right hand side of (12) is the self-invertible Hankel transform; thus fl(r) can
be computed as

(14) fl(r) =

∞∫
0

Fl(λ)J|l|(λr)λdλ, l ∈ Z.

By combining the equations (5), (10), (13), (14) and (9) one formally reconstructs
f(x).

This solution was first proposed by Norton [15] for the interior problem, i.e.
for the case when the reconstructed function is supported in the interior of S0.
An important issue not addressed by Norton is the treatment of the zeros of the
Bessel functions J|l|(λR0) in the denominator of equation (13). Since the Hankel
transform Fl of fl (given by (12)) is a bounded function of λ, the ratio (13) remains
bounded for all values of λ, implying that the exactly computed ĝl(λ) vanishes at
all zeros λl,m, (m = 0, 1, 2, ...) of the Bessel function Jl(λR0). Therefore, all the
singularities in (13) are removable, for example, by application of the L’Hospital’s
rule. This is not a very practical algorithmic solution since an approximation to
ĝl(λ) computed from the noisy data will not, in general, have zeros at λl,m. Even if
one continues to formally use the L’Hospital’s rule at λl,m, computing the fraction
ĝl(λ)/J|l|(λR0) at values of λ close to λl,m is still an ill-posed problem. A better
solution was proposed in [9] where the Fourier-Bessel series was used in a way that
avoids divisions by zeros. A more elegant solution [3, 12] (applicable for the interior
problem only) is to replace the Bessel function J0(λr) in (5) and in (7) by the Hankel
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function H
(1)
0 (λr). This leads to a ratio similar to (13), but with Bessel functions

in the denominator replaced by Hankel functions. Since the latter functions do not
have zeroes for real values of λ, a straightforward discretization of (14) leads to a
stable algorithm.

In the present case of the exterior or exterior/interior problem the methods of [3,
9, 12] are no longer applicable. In order to avoid divisions by small values of
J|l|(λR0) in (13) we will utilize two techniques. The first of them consists in using
complex values of λ and deforming the integration contour in (14) to avoid all the
zeros of J|l|(λR0) except the first one at λ = 0. In the next section we show that
such a deformation does not change the computed value of fl.

In order to deal with the zero at λ = 0 and with the small values of J|l|(λR0)
in the neighborhood of this zero we will have to restrict the values of λ and l
for which Fl(λ) are computed, and to replace by zero the missing values. After
such a replacement the algorithm will no longer be theoretically exact, but the
computations will be stable. This technique is described in Section 1.4 .

1.3. Deforming the contour. In order to avoid division by zeros in (13) we will
work with complex values of λ lying on the curve C consisting of the segments
[0, ia] and infinite line [ia, ia + M ] with M real, going to ∞. The values of ĝ(z, λ)
are computed by formula (5) for all λ ∈ C. Then fl(r) is computed using instead of
(14) the following formula

(15) fl(r) =

∫
C

Fl(λ)J|l|(λr)λdλ, l ∈ Z.

Since all zeros of Bessel functions J|l|(t) are real the denominator in the formula (13)
(defining Fl(λ)) vanishes only at λ = 0 (except the case l = 0 when the denominator
does not vanish at λ = 0). Numerical integration in the neighborhood of λ = 0
requires regularization, as described in the next section.

We need to prove that formulas (14) and (15) are indeed equivalent. First, we
observe the following well known property:

Proposition 1. For each l ∈ Z, function Fl(λ) given by equation (12) is an entire
function.

Proof. This fact follows from the well-known relation between the Hankel transforms
(12) and the entire 2D Fourier transform of f(x). I.e., up to a constant factor, Fl(λ)

is the restriction of the entire 2D Fourier transform f̂l(ξ1, ξ2) of a finitely supported
function fl(r) exp(ilθ) to the complex plane ξ1 = −λ ∈ C, ξ2 = 0.

Now, in order to prove that the integral over the positive real values of λ can be
replaced by the integral over C it is enough to show that

(16) lim
b→∞

b+ia∫
b

Fl(λ)J|l|(λr)λdλ = 0.

Let us first recall the asymptotic behavior of the Bessel function Jν(z) for large
values of argument z (see [1], formula 9.2.1)

(17) Jν(z) =

√
2

πz

[
cos
(
z − νπ

2
− π

4

)
+ e| Im z|O(|z|−1)

]
.
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It follows that for λ lying on the segment [b, b+ ia] and r ∈ [0, R1]

|J|l|(λr)| ≤
√

2

πb
eaR1

[
1 +O

(
1

b

)]
.

Now, in order to prove (16) it is enough to show that Fl(λ) decays sufficiently
fast in the limit b→∞. This condition is given by the following

Proposition 2. For every fixed integer l ≥ 0, in the semi-infinite strip D = {λ | 0 ≤
Im λ ≤ a, Reλ ≥ 0} function Fl(λ) decays uniformly with respect to b ≡ Reλ as
o(b−1/2) when b→∞.

Proof. In addition to the asymptotic decay for large values of the argument men-
tioned above, Bessel function Jn(z) is bounded for any integer index n and any
z ∈ D. This can be easily deduced, for example, from the well-known representa-
tion of the Bessel function ([1], formula 9.1.21)

Jn(z) =
1

2πin

2π∫
0

eiz cosφeinφdφ,

leading to the estimate |Jn(z)| ≤ e| Im z|. This fact can be used to derive an estimate
on Fl(λ). Taking into account finite support of fl(r), from the definition of Fl(λ)
we obtain

|Fl(λ)| =

∣∣∣∣∣∣
R1∫
0

rfl(r)J|l|(λr) dr

∣∣∣∣∣∣ ≤
1/
√
b∫

0

r|fl(r)|
∣∣J|l|(λr)∣∣ dr

+

∣∣∣∣∣∣∣
R1∫

1/
√
b

rfl(r)J|l|(λr) dr

∣∣∣∣∣∣∣ .(18)

Since both fl(r) and J|l|(λr) are bounded, the first integral in the right hand side

decays as O(b−1):

(19)

1/
√
b∫

0

r|fl(r)||J|l|(λr)|dr ≤ max
0≤r≤R1

|fl(r)|eaR1

1/
√
b∫

0

r dr = O
(
b−1
)

as b→∞.

The last integral in (18) over the interval [1/
√
b, R1] can be estimated by using the

large argument asymptotics (17), since |λr| ≥
√
b on this interval:∣∣∣∣∣∣∣

R1∫
1/
√
b

rfl(r)J|l|(λr)dr

∣∣∣∣∣∣∣ =

=

∣∣∣∣∣
√

2

πλ

∣∣∣∣∣
∣∣∣∣∣∣∣
R1∫

1/
√
b

√
rfl(r)

[
cos

(
λr − |l|π

2
− π

4

)
+ e| Im(λr)|O(|λr|−1)

]
dr

∣∣∣∣∣∣∣
≤

∣∣∣∣∣
√

2

πb

∣∣∣∣∣

∣∣∣∣∣∣∣
R1∫

1/
√
b

√
rfl(r) cos

(
λr − |l|π

2
− π

4

)
dr

∣∣∣∣∣∣∣+ eaR1

R1∫
1/
√
b

√
r|fl(r)|O

(
1√
b

)
dr


Inverse Problems and Imaging Volume 8, No. 2 (2014), 339–359
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=

∣∣∣∣∣
√

2

πb

∣∣∣∣∣
∣∣∣∣∣∣∣
R1∫

1/
√
b

√
rfl(r) cos

(
λr − |l|π

2
− π

4

)
dr

∣∣∣∣∣∣∣+O
(
1

b

)
.(20)

Next, by adding another small term (uniformly decaying as O
(
1
b

)
), the integral in

(20) can be extended to the whole interval [0, R1]:
(21)∣∣∣∣∣∣∣

R1∫
1/
√
b

rfl(r)J|l|(λr)dr

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣
√

2

πb

∣∣∣∣∣
∣∣∣∣∣∣
R1∫
0

√
rfl(r) cos

(
λr − |l|π

2
− π

4

)
dr

∣∣∣∣∣∣+O
(

1

b

)
.

Suppose that λ = b+ iα, with α ∈ [0, a]. For a fixed α the last integral in (21) can
be re-written as a combination of a sine and cosine Fourier transforms of a finitely
supported integrable functions cosh(αr)

√
rfl(r) and sinh(αr)

√
rfl(r):∣∣∣∣∣∣

R1∫
0

√
rfl(r) cos

[
(b+ iα)r − |l|π

2
− π

4

]
dr

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
R1∫
0

√
rfl(r) cos

(
rb− |l|π

2
− π

4

)
cosh(αr)dr

∣∣∣∣∣∣
+

∣∣∣∣∣∣
R1∫
0

√
rfl(r) sin

(
rb− |l|π

2
− π

4

)
sinh(αr)dr

∣∣∣∣∣∣ .
The well-known Riemann-Lebesgue lemma then implies that for a fixed α

(22)

R1∫
0

√
rfl(r) cos

(
λr − |l|π

2
− π

4

)
dr → 0 as b→∞.

We cannot claim yet that this decay is uniform with respect to Imλ. However,
(22) holds, in particular for α = 0 and α = a, which correspond to the lower and
upper boundaries ∂Dlower and ∂Dupper of the strip D. Now, by combining estimates
(18)-(22), one obtains

(23) |Fl(b+ iα)| = o
(
b−1/2

)
, as b→∞,

for every fixed α ∈ [0, a]. It follows that the real and imaginary parts of the function
Fl(λ) are harmonic functions within the strip D, vanishing at infinity. The values
of these functions on ∂Dlower and ∂Dupper decrease as o

(
b−1/2

)
when b→∞. Now

the uniform decay within D can be established by applying the proof presented in
the Appendix of [11], resulting in the estimate

(24) |Fl(λ)| = o
(
|Reλ|−1/2

)
, 0 ≤ Imλ ≤ a, as Reλ→∞.

Now vanishing of the integral in (16) is guaranteed by combining (24) with (17)
and we thus proved the following

Theorem 1.1. Integration over the positive real axis in (14) is equivalent to inte-
gration over contour C in (15).
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1.4. Regularization. The contour deformation described in the previous section
eliminates the division by small values in the denominator of (13) for all values of
λ, except λ = 0. Unlike other zeros, at λ = 0 Bessel function Jν(λ) has a root of
multiplicity |ν| (we consider only integer ν). In addition Jν(t) remains small (much
less than one) in the interval t ∈ [0, ν(1 − ε))] (with the value of ε depending on
the desired notion of “smallness”). A more quantitative description of this decay is
given by the first term of the Debye asymptotics ([1], formula 9.3.7):

Jν(ν sechα) ∼
1√

2πν tanhα
exp[ν(tanhα− α)], α > 0, ν → +∞.

It follows that in any direction x = kν, with |k| < 1, values of Jν(x) decay expo-
nentially as x→∞.

Such behavior of Bessel functions results in extremely small values of Fl(λ) and
ĝl(λ) for certain values of λ. Since fl(r) are finitely supported in the interval [0, R1],
equation (12) shows that Fl(λ) become very small for values of |l| ≥ λR1. For
simplicity we neglected here the narrow transition zone. We also notice that this
effect is preserved when λ is slightly shifted into the imaginary direction (|l| � 1 ≥
| Imλ|). In other words, the vanishing values lie within the cone |l| ≥ R1 Reλ.

We notice, parenthetically, that this effect is closely related to the well-known
“bow-tie” shape of the Fourier spectrum of projections in classical X-ray tomog-
raphy. Functions Fl(λ) can be understood as the Fourier coefficients obtained by

expanding the Fourier transform f̂(ξ) of f(x) represented in polar coordinates in
the 1D Fourier series in the angular coordinate. It follows that if f(x) is supported
within a circle of radius R1 then there is little energy in the cone |l| ≥ R1λ; these
values do not need to be computed and can be set to zero without much effect on
the reconstructed image.

However, functions ĝl(λ) given by (11) have an additional Bessel factor J|l|(λR0)
in front of the integral. According to the asymptotic behavior of the Bessel func-
tions, the exact values of ĝl(λ) will become very small in the larger cone |l| ≥
R0 Reλ. Since we need to compute (13) from the approximately known values of
ĝl(λ), the division within the cone |l| ≥ R0 Reλ is an ill-posed operation and should
be avoided. The regularization step of the algorithm consists in replacing values of
Fl(λ) by zeros within the cone |l| ≥ R0 Reλ. While values of Fl(λ) within the smaller
region of |l| ≥ R1 Reλ are very small and can be set to zero without noticeably af-
fecting the image, the additional loss of values in the region R0 Reλ ≤ |l| ≤ R1 Reλ
will cause the disappearance of certain material interfaces (or wavefronts).

It is interesting to investigate which wavefronts will remain in the image and
which will be smoothed out. Notice that the reconstructed image is obtained by
combining equations (9) and (15), in other words

f(x(r, θ)) =

∞∑
l=−∞

∫
C

Fl(λ)J|l|(λr)e
ilθλdλ.

Setting to zero certain values of Fl(λ) is equivalent to removing from the recon-
structed image components in the form J|l|(λr)e

ilθ for certain values of λ (for sim-
plicity we will ignore in the following crude analysis the small imaginary part of
λ).

Let us analyze local behavior of a function J|l|(λr)e
ilθ in a small neighborhood N

of point p as shown in Figure 1. (Due to the rotational symmetry of the acquisition
scheme it is enough to understand this behavior only for the points located on the
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vertical axis). Within N we have x1 ≈ Rθ, so that the angular exponent eilθ can
be approximated by exp(ilx1/R), where x = (x1, x2). The function u(x(r, θ)) ≡
J|l|(λr)e

ilθ solves the Helmholtz equation

∆u+ λ2u = 0.

Locally the dependence of this function on x1 can be approximated by exp(ilx1/R).
Then u(x) can be approximated by the formula

(25) u(x) ≈ exp(ilx1/R)(c1 exp(iγx2) + c2 exp(−iγx2))

with some constants c1 and c2, and with the vertical frequency γ satisfying the
condition

l2

R2
+ γ2 = λ2.

The two plane waves given by (25) propagate in the directions given by the wave
vectors v+ and v−:

v± = (l/R,±γ) = λ(cos θ, sin(±θ)),
where the angle θ between v+ and the horizontal axis is given by the condition

cos θ =
l

λR
.

Now, if components J|l|(λr)e
ilθ with λR0 ≤ |l| are filtered out by the regular-

ization step of the algorithm, the boundary of the cone of excluded directions are
given by the condition

λR0 = |l|
or

cos θ0 =
λR0

λR
=
R0

R
.

However, this condition coincides with the visibility condition discussed in the be-
ginning of Section 1. It follows that our regularization technique removes from the
image plane waves propagating in the “invisible” directions but keeps all the others.

2. Inverse problem for IVUS and the CMT. While the inverse problem of
IVPA is reduced to the inverse problems for the CMT in a rather straightforward
way (see Section 1.1), the situation in IVUS is more complicated. The important
difference between these modalities lies in the duration of the excitation. In IVPA
the acoustic wave is excited by a short laser pulse; it’s duration is much shorter than
the time needed for an acoustic wave to cover a distance compared to the desired
resolution of the image. Thus, the forward problem can be modelled by the wave
equation without sources (the source term is absorbed in the initial condition at
t = 0). In the IVUS, on the other hand, the reflected acoustic wave that carries the
desired information is generated by the incoming excitation wave initiated by the
transducer; both waves propagate with the same speed. In addition, while in the
IVPA the speed of sound can be assumed constant and known, in the IVUS the
variations in the speed of sound is the information one wants to reconstruct. This
makes the inverse problem non-linear; we will linearize it by using the Born approx-
imation. In this section we show that under the latter approximation the circular
means of the speed of sound (centered at each transducer) can be reconstructed
from the measurements by solving a certain Volterra integral equation. After the
circular means are found, the exterior problem for the CMT can be solved by the
methods presented in the previous section.
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We will assume that each transducer is infinitely long and the measurements
are made by each transducer sequentially and independently from the others. A
transducer initiates an outgoing excitation wave uexc(t,x) and then switches into
the recording mode. The transducers are presumed to be infinitely thin, so that
after the initial pule is generated, they do not perturb the propagation of acoustic
waves. Under these assumptions function uexc(t,x) satisfies the free-space wave
equation

(26)
∂2

∂t2
uexc(t,x) = c2(x)∆uexc(t,x), x ≡ (x1, x2, x3) ∈ R, t ∈ (0,∞).

We will assume that the speed of sound c(x) is close to a constant and this constant
(by choosing proper physical units) can be made equal to unity. In other words

(27) c2(x) = 1 +m(x), |m(x)| � 1.

Now (26) can be re-written in the following form:

(28)
∂2

∂t2
uexc(t,x) = (1 +m(x))∆uexc(t,x), x ∈ R3, t ∈ (0,∞).

Let us also consider the solution u0(t,x) of the wave equation in a homogeneous
media (excited by the same transducer). It satisfies the homogeneous wave equation

(29)
∂2

∂t2
u0(t,x) = ∆u0(t,x), x ∈ R3, t ∈ (0,∞).

Now the difference w(t,x) = uexc(t,x)− u0(t,x) satisfies the equation

∂2

∂t2
w(t,x) = ∆w(t,x)+m(x)∆u0(t,x)+m(x)∆w(t,x), x ∈ R3, t ∈ (0,∞).

The Born approximation results from neglecting the last term in the above equation
(this is a second order term with respect to m(x) since ∆w has the same order as
m(x)). Taking into account (29) we obtain

∂2

∂t2
w(t,x) = ∆w(t,x) +m(x)∆u0(t,x)

= ∆w(t,x) +m(x)
∂2

∂t2
u0(t,x), x ∈ R3, t ∈ (0,∞).(30)

Our goal is to reconstruct from the measurements some information about m(x).
Since the transducers we model do not have any resolution in the vertical direction,
we will only be able to partially reconstruct the integrals m(x1, x2) of m(x) in x3:

m(x1, x2) =

∫
R

m(x)dx3.

The first step towards this goal is to reconstruct from the measurements obtained
by one transducer (without loss of generality assumed to be located along the x3
axis) the circular averages M(r) of m(x1, x2) defined as follows

M(r) =

2π∫
0

m(r cos θ, r sin θ)dθ.

If the wave u0(t,x) is excited by an infinitely thin transducer lying on the Ox3
axis, u0(t,x) should be invariant with respect to x3, and invariant with the respect
to rotations about the axis Ox3. We will represent u0 with the help of the Green’s
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function G2D(t, x1, x2) of the two-dimensional wave equation in R2 satisfying the
radiation condition at infinity and given by equations (2) and (3):

u0(t,x)=u∗0

(
t,
√
x21 + x22

)
≡
∫
R
ϕ(τ)G2D(t− τ, x1, x2)dτ(31)

=

∫
R
ϕ(τ)Φ

(
t− τ,

√
x21 + x22

)
dτ

=

∫
R
ϕ(τ)Φ (t− τ, r(x)) dτ,(32)

where r(x) =
√
x21 + x22, and ϕ(τ) is a C∞ function in R finitely supported within

the interval [−a, 0]. The function ϕ(τ) is a delta-approximating function describing
the initial pressure on the surface of the transducer. It is introduced in order to
avoid some technical difficulties; further in this section we will pass to the limit
a → 0 and ϕ(τ) → δ(τ). We notice that for such a choice of ϕ(τ), the function
u0(t,x) still solves the wave equation in the whole space R2 for all t ≥ 0, and this
solution is invariant with respect to x3 (it depends only on r(x) and t).

Consider the free space Green’s function G3D(t,x) of the 3D wave equation
satisfying the radiation condition at infinity

G3D(t,x) =
δ(|x| − t)

4πt
.

Using G3D(t,x), solution of equation (30) can be re-written in the form

w(s,x) =

∫
R3

∫
R

[
m(y)

∂2

∂t2
u0(t,y)

]
G3D(s− t,x− y)dtdy.

Under an additional assumption that m(x) is finitely supported in space in x3 (or
that it decreases at infinity sufficiently fast), one can consider integrals w̄(t, x1, x2)
of w(t,x) in x3:

w̄(t, x1, x2) ≡
∫
R

w(t,x)dx3

The transducer measures w̄(s, 0, 0), i.e. the integral of w(s,x) over the Ox3 axis:

w̄(s, 0, 0) =

∫
R

∫
R3

∫
R

[
m(y)

∂2

∂t2
u0(t,y)

]
G3D(s− t, (0, 0, x3)− y)dtdydx3

=

∫
R

∫
R

∫
R

∫
R

[
m(y)

∂2

∂t2
u0(t,y)

]
G2D(s− t, y1, y2)dtdy1dy2dy3(33)

where we interchanged the order of integrations and made use of the fact that

G2D(t,−y1,−y2) = G2D(t, y1, y2) =

∫
R

G3D(t, (y1, y2, y3))dy3.

By using (31) equation (33) can be further simplified as follows

w̄(s, 0, 0) =

∫
R

∫
R

∫
R

∫
R

m(y)
∂2

∂t2
u∗0

(
t,
√
y21 + y22

)
dy3

G2D(s− t, y1, y2)dtdy1dy2
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=

∫
R

∫
R

∫
R

[
m(y1, y2)

∂2

∂t2
u∗0

(
t,
√
y21 + y22

)]
G2D(s− t, y1, y2)dtdy1dy2.(34)

By utilizing formula (2) and by integrating (34) in polar coordinates, w̄(s, 0, 0) can
be expressed in terms of the circular averages M(r) as follows

w̄(s, 0, 0) =

∫
R

∫
R

∫
R

[
m(y1, y2)

∂2

∂t2
u∗0

(
t,
√
y21 + y22

)]
Φ

(
s− t,

√
y21 + y22

)
dtdy1dy2

=

2π∫
0

∞∫
0

∫
R

[
m(r cos θ, r sin θ)

∂2

∂t2
u∗0 (t, r)

]
Φ (s− t, r) dtrdrdθ

=

∞∫
0

∫
R

[
M(r)

∂2

∂t2
u∗0 (t, r)

]
Φ (s− t, r) dtrdr.(35)

The substitution of (32) into (35) results in the following integro-differential
equation relating circular averages M(r) with the measurements w̄(s, 0, 0):

(36) w̄(s, 0, 0) =

∞∫
0

∫
R

M(r)

[
∂2

∂t2

∫
R
ϕ(τ)Φ (t− τ, r) dτ

]
Φ (s− t, r) dtrdr.

Below we show that by a proper choice of ϕ(τ) the above equation can be reduced
to the Volterra integral equation of the second kind.

Let us consider the anti-derivative Ψ (t, r) of Φ (t, r) in t:

∂

∂t
Ψ (t, r) = Φ (t, r) , Φ (t− τ, r) = − ∂

∂τ
Ψ (t− τ, r) .

Then, by taking into account the finite support of ϕ(τ), the expression in the brack-
ets in (36) can be transformed as follows:

∂2

∂t2

∫
R
ϕ(τ)Φ (t− τ, r) dτ =

∂2

∂t2

∫
R
ϕ′(τ)Ψ (t− τ, r) dτ

=
∂

∂t

∫
R
ϕ′(τ)Φ (t− τ, r) dτ =

∫
R
ϕ′′(τ)Φ (t− τ, r) dτ.

Now (36) can be re-written in the following form

w̄(s, 0, 0) =

∞∫
0

∫
R

M(r)

∫
R

ϕ′′(τ)Φ (t− τ, r) dτ

Φ (s− t, r) dtrdr

=

∞∫
0

rM(r)

∫
R

ϕ′′(τ)

∫
R

Φ (t− τ, r) Φ (s− t, r) dt

 dτ
 dr

=

∞∫
0

rM(r)

∫
R

ϕ′′(τ)

∫
R

Φ (t, r) Φ ((s− τ)− t, r) dt

 dτ
 dr

=

∞∫
0

rM(r)

∫
R

ϕ′′(τ)K(r, s− τ)dτ

 dr
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where

(37) K(r, v) ≡
∫
R

Φ (t, r) Φ (v − t, r) dt.

Let us consider the case of ϕ(τ) equal to the Dirac’s delta function δ(τ). To this end
introduce a family of delta-approximating functions ϕα(τ) and the corresponding
family of measurements w̄α(s, 0, 0) so that

lim
α→0

ϕα(τ) = δ(τ).

Then, taking the limit α→ 0 yields

w̄δ(s, 0, 0) ≡ lim
α→0

w̄α(s, 0, 0) =

∞∫
0

rM(r)

∫
R

δ′′(τ)K(r, s− τ)dτ

 dr

=

∞∫
0

rM(r)
∂2

∂s2
K(r, s)dr,

where the second derivative of K(r, s) should be understood in the sense of distri-
butions. In fact, it will be more convenient for us to work with the anti-derivative
of the data Wδ(s) ≡

∫
w̄δ(s, 0, 0)ds. The latter function is related to the averages

M(r) by the equation

(38) Wδ(s) =

∞∫
0

rM(r)
∂

∂s
K(r, s)dr,

where the derivative is, again, understood in the sense of distributions.
Let us investigate the behavior of K(r, s). By combining (3) and (37) we obtain

K(r, s) =

∫
R

Φ (t, r) Φ (s− t, r) dt =
1

4π2

∫
R

H (t, r)√
t2 − r2

H (s− t, r)√
(s− t)2 − r2

dt.

We observe that if s ≤ 2r, the numerator of the integrand identically vanishes
and K(r, s) = 0. Otherwise, if s > 2r,

K(r, s) =
1

4π2

s−r∫
r

1√
(s− t)2 − r2

√
t2 − r2

dt.

By substitution q = t− s/2 this can be further simplified to

4π2K(r, s) =

s
2−r∫
0

2√[(
s
2 − q

)2 − r2] [( s2 + q
)2 − r2]dq

=

s
2−r∫
0

2√[(
s
2 − r

)2 − q2] [( s2 + r
)2 − q2]dq.
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Integration by parts, followed by substitution η = q/(s/2− r) further yields

4π2K(r, s) =
π√
2rs
− 2

s/2−r∫
0

arcsin

(
q

s/2− r

)
q√

(s/2 + r)2 − q2
3 dq

=
π√
2rs
− 2(s/2− r)2

1∫
0

η arcsin η√
(s/2 + r)2 − (s/2− r)2η2

3 dη,(39)

where s > 2r. We notice that for r > 0 the expression in the denominator of the
last integrand is bounded away from zero:

(s/2 + r)2 − η2(s/2− r)2 ≥ (s/2 + r)2 − (s/2− r)2 = 4s2r2 > 16r4, s > 2r.

Thus, as s approaches 2r, the second term in (39) vanishes as O
(
(s/2− r)2

)
. More-

over, it is easy to check that the derivative (in s) of this term also vanishes as s
approaches 2r. Therefore, as a function of s, K(r, s) has a jump at s = 2r which
can be represented using the Heaviside function in the form π

2rH(s, 2r) with the
remaining part continuous through the point s = 2r:

4π2K(r, s) =
π

2r
H(s, 2r) +K1(r, s),

K1(r, s) ≡
{

0, s ≤ 2r
4π2K(r, s)− π

2rH(s, 2r), s > 2r.

Now, the derivative of K(r, s) has form

∂

∂s
K(r, s) =

1

8πr
δ(s− 2r) +

1

4π2

∂

∂s
K1(r, s),

where the second term is a bounded (although discontinuous at s = 2r) function.
The second term can be extended by continuity to the point s = 2r. Substituting
this expression in (38) yields

Wδ(s) =
1

8πs
M(s/2) +

1

4π2

s/2∫
0

rM(r)
∂

∂s
K1(r, s)dr.

This is a Volterra integral equation of the second kind, with a continuous kernel.
Equations of this type are well-posed and have unique solutions. They are also easy
to solve numerically. For example, the method of successive approximations will
converge unconditionally; it consists in computing the next approximation M(k+1)

from the previous one M(k) by the formula

M(k+1)(s/2) = 8πsWδ(s)−
2s

π

s/2∫
0

rM(k)(r)
∂

∂s
K1(r, s)dr.

Alternatively, our analysis of the kernel ∂
∂sK(r, s) suggests that, when properly

discretized, equation (38) will reduce to a well-posed system of linear equations, with
a triangular matrix. We chose this alternative to conduct numerical simulations
described in the next section.

3. Numerical realization and simulations. We present below the results of
numerical simulations illustrating the work of the algorithms proposed in the pre-
vious sections. The first two series of simulations test the performance of the CMT
inversion technique developed in Section 1.
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(a) (b)

(c) (d)

Figure 2. Simulation (a) phantom, interior problem (b) recon-
struction (interior problem) (c) phantom, interior/exterior problem
(d) reconstruction in interior/exterior problem. Dotted line shows
locations of the transducers

3.1. Inversion of the CMT. We first apply the CMT inversion algorithm to a
standard interior problem. This problem is well-posed and a good quantitatively
correct reconstruction is expected. As a phantom, we used a set of functions whose
gray-scale image is shown in Figure 2(a). These functions are mostly constant
(equal 1) within their support, however the transition from 1 to 0 is smooth. This
smoothness is especially important in the next section where the wave equation was
solved by finite difference methods whose accuracy would be severely compromised
if the test phantom were discontinuous. The simulated transducers are passing
through the circle of radius 0.5 perpendicular to the plane of the Figure; their loca-
tions are shown by the dotted line in Figure 2(a). Since the phantom is completely
surrounded by the transducers, this is an interior problem. There were 256 sim-
ulated transducers in this experiment; for each of them 401 circular means where
computed, with the radii ranging from 0 to 2. Figure 2(b) shows reconstruction
of the function from the circular means by the method presented in Section 1. As
expected, the reconstruction is quite accurate.

In order to test the performance of our method in the exterior/interior problem
we added to the phantom an additional function with the intention to crudely model
aorta walls, as seen, for example, in [18]. The material interfaces modelled by this
function are “visible”. The reconstruction from the circular means is shown in
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(a) (b) (c)

Figure 3. Simulation (a) phantom, dotted line shows locations of
the transducers (b) reconstruction from accurate data (c) recon-
struction from data with 5% noise.

Figure 2(d). One can see that the interior part of the phantom is reconstructed
as well as before. In spite of the ill-posedness of the exterior problem and the
inexact nature of the regularized algorithm, the exterior part of the phantom is
also reconstructed quantitatively correct, although a careful reader will notice some
variations in the brightness of the “aorta walls”.

It is interesting to see what effect on the reconstruction will have the presence
of “invisible” interfaces. To this end we added to the phantom several circular
inclusions (see Figure 3(a)). Figure 3(b) demonstrates the reconstruction from the
accurate circular means. In Figure 3(c) before the reconstruction a simulated noise
was added to the circular means; the intensity of the noise was 5% of the “signal”
in L2 norm. For a fair comparison images in Figure 3 are drawn using the same
gray scale. Images in Figures 3(b) and 3(c) show that, as expected, the “invisible”
material interfaces are significantly blurred, and the details (circular inclusions) are
not reconstructed correctly. Nevertheless, the visible parts of the corresponding
boundaries are captured, and the artifacts are relatively well localized, so that
“aorta walls” are still clearly seen.

3.2. Simulation of the IVUS. Our next simulation tests the feasibility of tomog-
raphy reconstruction in IVUS. The geometry of the simulation is similar to that of
the previous section. This time, however, for every transducer location using the
time-stepping finite-difference technique we solved two wave equations. One of them
corresponds to the uniform speed of sound; it models u0(t,x) from Section 2. Since
the initial condition does not depend on x3, this is actually a 2D problem. The
other equation we solve is equation (26) with a variable speed of sound, again not
depending on x3.The simulated transducers “measured” the difference w(t,x) of
these two solutions.

The variable speed of sound in the first of our simulations was equal to 1 plus 1%
perturbation modelled by the phantom from the previous section. The perturbation
is shown in Figure 4(a). The circular means of the perturbation were reconstructed
using the method from Section 2, and the perturbation was then reconstructed from
the circular means by the method of Section 1. The result is shown in Figure 4(b).
Although additional artifacts can be noticed in the image (as compared to Fig-
ure 3(b)), the “aorta walls” are still clearly seen and the interior part of the image
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(a) (b) (c)

Figure 4. Reconstruction from the wave equation simulation (a)
phantom, dotted line shows locations of the transducers (b) recon-
struction corresponding to the maximum speed of 1.01 (c) recon-
struction corresponding to the maximum speed of 1.05.

is reconstructed well. The additional artifacts are caused by the imprecise nature
of the method (the Born approximation is used) and by the errors introduced by
finite differences when modelling the forward problem.

In order to better understand the effect of the Born approximation we repeated
the last simulation with new variable speed of sound equal 1 plus a 5% perturbation
given by the same function. The result is shown in Figure 4(c) (with the gray scale
modified by the factor of 5). One can see additional artifacts in the central part of
the image; they are clearly caused by the increased error in the Born approximation,
since everything else remains the same. Nevertheless the rest of the image is recon-
structed quite well, and the parts of the phantom with visible material interfaces
are reconstructed with a reasonable accuracy.

Concluding remarks. We have considered in the present paper the inverse prob-
lems that arise in IVPA and IVUS, and have shown that under several simplifying
assumptions these problems can be reduced to the solution of the exterior problem
for the CMT. The latter is, in general, severely ill-posed. However, the regularized
algorithm proposed in Section 1 yields stable reconstruction of the visible material
interfaces while it blurs the invisible ones. If the invisible interfaces are absent or
almost absent in the image, the algorithm reconstructs a quantitatively correct im-
age. Such a situation (absence of invisible interfaces) is not uncommon in practical
application of IVPA and IVUS, judging from the images we found in the literature.

In order to carry out our analysis we have made several simplifying assumptions.
In particular, the transducers were assumed infinitely long and infinitely thin, the
body of the catheter was assumed to be made of material with the same speed of
sound as that in blood. We also assumed that the speed of sound in the soft tissues
constituting and surrounding the vessels is close to the speed of sound in blood.
The latter assumption is standard in problems of thermoacoustic tomography; it
allowed us to use the constant speed approximation in IVPA and the Born approxi-
mation in IVUS. The model of acoustically transparent and infinitely long catheter
is more crude; it was used mostly to simplify the analysis and to develop practically
useful reconstruction algorithms. It is not clear whether it is feasible or practical
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to manufacture the catheter whose speed of sound matches that of blood or water.
The effect of the finite length of the transducers also requires further investigation.

However, our purpose was not to develop a perfect reconstruction algorithm, but
rather to demonstrate the feasibility of tomography-like reconstruction in IVPA and
IVUS. More sophisticated techniques, that would take into account the details we
neglected or over-simplified in the present, first approach to the problem, will be
the subject of the future work.
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