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Abstract

Practical applications of thermoacoustic tomography require numerical
inversion of the spherical mean Radon transform with the centers of integration
spheres occupying an open surface. A solution of this problem is needed
(both in 2D and in 3D) because frequently the region of interest cannot be
completely surrounded by the detectors, as happens, for example, in breast
imaging. We present an efficient numerical algorithm for solving this problem
in 2D (similar methods are applicable in the 3D case). Our method is based on
the numerical approximation of plane waves by certain single-layer potentials
related to the acquisition geometry. After the densities of these potentials have
been precomputed, each subsequent image reconstruction has the complexity of
the regular filtration backprojection algorithm for the classical Radon transform.
The performance of the method is demonstrated in several numerical examples:
one can see that the algorithm produces very accurate reconstructions if the data
are accurate and sufficiently well sampled; on the other hand, it is sufficiently
stable with respect to noise in the data.

Thermoacoustic tomography (TAT) is based on measurements of acoustic waves excited in the
patient’s body by an external electromagnetic pulse [16, 37]. The method is gaining popularity
among researchers because it combines the high resolution of ultrasound tomography with
the high contrast of the images attainable due to the strong variance in the electromagnetic
properties of the body tissues. One of the most promising applications of this technique is
breast imaging, where absorption of the electromagnetic energy in tumors is several times
higher than that in healthy tissues. Under certain simplifying assumptions (most importantly,
that of a constant speed of sound in the tissue) the corresponding reconstruction problem can
be reduced to the inversion of the spherical mean Radon transform. In the present paper we
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propose an efficient numerical algorithm for solving this problem in 2D in the case when the
detectors lie on an open curve only partially surrounding the region of interest.

Significant progress has been achieved recently in mathematics of TAT; an extended
discussion and relevant references can be found in reviews [1, 12, 17]. In particular, several
versions of explicit inversions formulae [8, 11, 12, 19, 38] and certain series solutions
[20, 23, 24] have been obtained for measurement schemes with the detectors lying either
on closed surfaces surrounding the region of interest (ROI) or on certain open but unbounded
surfaces such as a plane or an infinite cylinder.

However, in most applications the ROI is not the whole human body but rather a part
of it—as happens, for example, in mammography. In such situations only some part of the
region boundary can be covered by the detectors. This, in turn, necessitates the development
of algorithms that can reconstruct the image from such data.

The simplest approach to image reconstruction from open surfaces is to place detectors
on a truncated plane or cylinder and to apply the known inversion formula(s) for the full plane
or infinite cylinder. Of course, the reconstruction would not be exact; moreover, it has been
shown that for a stable reconstruction of a compactly supported function from its spherical
means it is necessary to know the integrals over sufficiently many spheres, so that the so-called
‘visibility’ condition is satisfied [21, 25, 26, 39, 40]. (It has been shown, in particular, that
under this condition the reconstruction problem can be reduced either to the inversion of an
elliptic operator or, after a certain filtration, to a solution of the Fredholm integral equation of
the second kind [18, 25, 26, 28]. In both cases the problem is only mildly unstable, similar
to the inversion of the standard Radon transform [22].) The ‘visibility’ condition (for TAT)
is satisfied if for each point x in the ROI each straight line passing through x intersects the
measuring surface at least once. A sphere surrounding the object satisfies this condition while
an infinite plane and an infinite cylinder do not. For a truncated plane or truncated cylinder
the set of ‘bad’ directions is even larger than for their infinite counterparts. If this condition
is violated, it is practically impossible to accurately reconstruct sharp interfaces (material
boundaries) at those points of the image for which some of the straight lines normal to the
interface do not intersect the measuring surface. (In 2D an exact reconstruction technique was
developed in [27] for the case when the centers of the integration circles lie on a segment of a
straight line. However, the reconstruction is still, in general, unstable in this case.)

For a given bounded ROI there exist many bounded open acquisition surfaces that do
satisfy the visibility condition. Almost all known reconstruction techniques applicable to
such surfaces are of an approximate nature. For example, by ‘approximating’ the integration
spheres by planes and by applying some version of the classical inverse Radon transform,
one can reconstruct an ‘approximation’ to the image. Due to the symmetry in the classical
Radon projections, the normals to the integration planes should fill only a half of a unit
sphere, making possible the reconstruction from an open measurement surface. A more
sophisticated approach is represented by the so-called ‘straightening” methods [34, 35] based
on the approximate reconstruction of the classical Radon projections from the measurements
that correspond to the spherical mean Radon transform. However, these methods yield not
the exact solution but rather a parametrix of the problem; the image is reconstructed only
up to a certain smooth term. In other words, while jumps corresponding to sharp material
interfaces are reconstructed accurately, the accuracy of the lower spatial frequencies cannot be
guaranteed. Unlike the approximations resulting from the discretization of the exact inversion
formulae (in the situations when such formulae are known), the parametrix approximations do
not converge when the discretization of the data is refined (in the absence of noise). In [29], an
exact inversion formula for the spherical surface is used to obtain approximate reconstructions
from other measurement surfaces; in order to further improve the approximation, additional
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corrections are introduced. These methods yield different parametrices than the one proposed
in [34, 35]; which one is better remains an open question.

An accurate numerical reconstruction from an open surface acquisition scheme was
demonstrated in [4] (see also [32]). In this work a version of an iterative algebraic
reconstruction algorithm was successfully employed to recover a numerically generated
phantom. Iterative algebraic reconstruction algorithms are, however, notoriously slow; the
above-mentioned reconstruction, for example, required the use of a cluster of computers and
took 100 iterations to converge. A faster converging algorithm can be obtained by combining
iterative refining with a parametrix-type algorithm [29, 31]. These methods are closely related
to the general scheme proposed in [5] for the inversion of the generalized Radon transform
with integration over general manifolds. It reduces the problem to the Fredholm integral
equation of the second kind, which is well suited for numerical solution. Such an approach
can be viewed as using a parametrix method as an efficient preconditioner for an iterative
solver, which, as it has been shown in numerical experiments, significantly accelerates the
convergence of the iterations.

Finally, in [33] an interesting attempt has been made to generate the absent data from the
consistency conditions on the spherical mean Radon transform, in order to ‘numerically close’
the open measurement surface. The resulting algorithm, however, seems to be less accurate
than methods we mentioned earlier, and it exhibits instability on higher spatial frequencies.

In the present paper we propose a novel non-iterative algorithm for the numerical inversion
of the spherical mean Radon transform from open surfaces in 2D. Our numerical experiments
show that this method yields very accurate reconstructions in the absence of noise, and is
almost as stable as the classical filtration/backprojection (FBP) algorithm (widely used for
the inversion of the regular Radon transform [14, 22]). The present algorithm requires pre-
computation of certain functions that jointly serve as a numerical filter; this needs to be done
only once for a given configuration of detectors. After these functions have been computed,
each reconstruction has numerical complexity similar to that of the FBP.

1. Formulation of the problem

In thermoacoustic tomography acoustic detectors measure the pressure of the outgoing wave
radiating from the patient’s body. This acoustic wave is generated by the thermoacoustic
expansion of the tissues initiated by a very short electromagnetic pulse. The initial pressure
f(x) strongly depends on the type of tissue, and is significantly higher for tumors, since they
happen to absorb much more electromagnetic energy than healthy tissue. Thus, recovering
f(x) would yield important medical information about the location and shape of tumors.

Let us denote by g(z, t) the pressure registered at the moment ¢ by the acoustic detector
placed at the point z. Under certain assumptions (such as a constant sound speed in the body,
ideal infinitely small detector, infinitely short pulse, and so on), one can recover from the
measurements the integral of f(x) over a sphere of radius r = ct centered at z. A dimensional
analysis shows that in order to reconstruct a function of a 3D variable, the detectors should
cover some measurement surface X. Assuming for simplicity that the speed of sound equals
unity, one arrives at the following formulation of the inverse problem: reconstruct function
f (x) supported within some 3D region of interest 2 from known values of its integrals g(z, r)
over all spheres of radius r with centers z lying on surface S (S and 2 are disjoint sets).

A 2D version of this problem also arises in the thermoacoustic tomography. Recently,
it has been proposed to use integrating linear detectors instead of point-like transducers
[6, 7,29, 30]. One such detector consists of a long straight segment of optical fiber that serves
as a sensor of an optical interferometer; the measurements are proportional to the integral of
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Figure 1. Geometry of the data acquisition.

the acoustic pressure over the length of the fiber. According to the experimentalists, such
detectors have much better sensitivity and spatial resolution than the conventional transducer.
It has been shown [6] that the reconstruction problem in this case reduces to the inversion of a
set of the circular mean Radon transforms followed by the inversion of a set of the regular 2D
Radon transforms (where the circular mean Radon transform is a set of normalized integrals
over circles with centers lying on a curve). The same practical reasons as in 3D case lead to the
requirement that the centers of the integration circles lie on an open bounded curve satisfying
(for a given ROI) the ‘visibility” condition.

In the present paper we study mostly the 2D case; in order to simplify the analysis we will
concentrate on a truncated circular geometry as described below. The 2D region of interest
2 is a truncated disk Q(R, Xggh) = {x = (x1, x2) | x12 + x% < R%?and x; < Xiight) and the
centers of integration circles lie on the circular arch y (R, Zsign) = {z = (21, 22) | z% + z% =
R}Z, and 7| < Zrgnt}, Where R, > R, see figure 1. Our goal is to reconstruct a Cé function
f (x) supported in 2 from the known values of its integrals g(z, r) over circles S(r, z) of radii
r centered at points z € y

glz,r) = / f(x)dl(x) = r/ fz+rw)do.
S(r,z) St

(The circular mean Radon transform is defined by the normalized integrals (or means), i.e.
by values of g(z,r)/2mr. We, however, prefer to work with the integrals g(z,r).) The
invertibility of the circular mean Radon transform is well known for such geometry [3]. The
stability of the reconstruction problem is, again, determined by the ‘visibility’ condition (see
[21, 25, 26, 39, 40]), which for this geometry is equivalent to the inequality Zright = Xrighe. Our
goal is to develop an efficient computational algorithm for the solution of this problem.

2. Outline of the method

The present algorithm is based on precomputing the approximations of plane waves in 2 by
the single-layer potentials in the form fy Z(Alz — x)p(z)dl(z), where p(z) is the density
of the potential and Z(t) is either the Bessel function Jy(¢) or the Neumann function Y, (7).
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Specifically, given a wavevector & we find numerically the densities pg 7(z) and p¢ y (z) of the
potentials

Wix, pe) = / Jo(Az — x| g, s (2) di(2), (1)
Y

Wy (x, pgy) = / Yo(Alz — x|)pe,y (z) dI(2), respectively )
y

where A = |£], such that
Wi (x, pg,g) + Wy (x, pgy) = exp(—i§ - x), Vx € Q. 3)

Obtaining such approximations is not trivial; we discuss this issue in more detail in the
following section. However, if the densities pg; and pgy have been found for all &
then function f(x) can be easily reconstructed. Indeed, let us introduce convolutions
Gi(x,y), Gy(r, 2) as follows

GJ()HZ)Z/Qf(x)JO(MZ_XDdxa

Gy(r,2) = /Qf(x)Yo(klz—xl)dx.

We note that the boundary values of these functions for all z € y can be computed from
projections g(z, r):

GJ()\»Z)Z/ 8(z, r)Jo(Ar)dr, “4)
R+

Gy(%,2) =/ 8(z, r)Yo(rr)dr. (%)
R+
Consider now the Fourier transform f (&) of f(x)

a 1
& = o / () exp(—if - x) dx.
T JQ

Using (3) we obtain
o 1
fé) = 2—/ FOIW;(x, pe.s) + Wy(x, pgy)]dx
T JQ
1
=5 |:[ f) oAz —x|)dx} Pe,y(2) dl(z)
T y Q
1
+ 2—/ [/ F@)Yo(r|z — x]) dx] P,y (z) di(2)
T y Q
1
= f 0.1 @G 1 Gu 2) + ey )Gy (b, DT dI2). ©)
T Jy

Formulae (4) and (5) in combination with (6) allow us to reconstruct (approximately) the
Fourier transform f (&) of f(x). Now f(x) can be recovered by inverting the 2D Fourier
transform. In order to minimize the operation count we will compute G ; (A, z) and Gy (X, 2)
(using (4) and (5)) for a set of fixed values of A = |&|; thus, the values of f (&) will be found
on a polar grid in £&. One can now use a high-order 2D interpolation to obtain values of the
Fourier transform on the Cartesian grid and apply the inverse 2D fast Fourier transform (FFT).
Another approach is to utilize the famous slice-projection theorem (see, for example [22]) and
reconstruct from the values of (&) on the polar grid the regular Radon projections of f (x);
the function then can be obtained by the application of the FBP algorithm [14, 22]. We have
chosen the latter approach. The whole algorithm can be briefly outlined as follows.
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(1) Choose a uniform polar grid in £ (the details are explained below). For each value of
&;.j = Ai(cos 0}, sinf;) precompute pz, ; ; and pg, , y as described in the following section.
This step does not depend on values of g(z, r) and needs to be performed only once for
each particular geometry.

(i) Given values of g(z,r), compute G, (A;, z) and Gy(};, z) (using (4) and (5)) for each
value of i. This can be done using the trapezoid rule in r.

(iii)) Compute f (&i,j) according to (6), using the same discretization of the integral as was
used to obtain (1) and (2).

(iv) Apply 1D FFT to values of f (&,j) for each fixed j, to reconstruct the classical Radon
projections of f(x) corresponding to the angular parameter 6;. (Alternatively, in the
presencerf strong noise iI} the data one can introduce a lower-pass filter n(£) and use
n(1& ;1) f (&, ;) instead of f(&; ;) on this step.)

(v) Use the well-known FBP algorithm [14, 22] to reconstruct f (x) from the standard Radon
projections.

Suppose the size of the Cartesian reconstruction grid is n x n, and s is the step of the
grid (s = 2R/(n — 1)). Assume for simplicity that the projections are discretized in r with
the same step s. Then the highest spatial frequency one can hope to recover is the Nyquist
frequency Amax = m(n — 1)/(2R). In turn, the Nyquist step AAnyquist for the discretization
in the frequency domain depends on the size of the support of the projections (2R); it equals
m/R. We found that the better results are obtained if one uses step AA half that size, i.e.
AL = %AANyquiS[ = 5% In order to choose the number of wave propagation directions 6; we
recall that the optimal number of classical Radon projections for the FBP algorithm is 7n /2
(see [22]), in the angular interval of size . Thus, our uniform polar grid in § is discretized
with step AX from O to A,y in the radial direction, and with step 2/x from O to 7 in the polar
direction. There is no need to compute values of f (&;. ;) for the values corresponding to the
polar angle from 7 to 27, since the function f(x) is real-valued.

It is clear that the number of detectors (or the number of projections) should be of order
O(n). We found in numerical experiments that the best results are obtained when this number
is about 20% higher than n. With such values of discretization parameters steps 2, 3 and 5
of the algorithm require O(n?) floating point operations; step 5 is faster (O(n?logn) flops).
Step 1, described in the following section, is more expensive computationally. The precise
operation count depends on the algorithm used to compute n singular value decompositions
(SVD) for matrices of size (n x n), and can be O(n*) operations or higher. However, step 1
needs to be performed only once for each particular geometry. The number of data generated
on step 1 and stored on a hard drive (values of the densities pg, ; ; and pz, ; y) is of order O n3).
The rest of the algorithm, including reading the precomputed densities, is completed in O(n?)
operations (similarly to the FBP).

Obviously, the feasibility of this method hinges on our ability to find approximations in
the form (3). In the following section we discuss the existence, accuracy and stability of such
approximations.

3. Approximations of plane waves by the single-layer potentials

3.1. Full circle acquisition

Before studying the more interesting case of an open acquisition curve y let us consider a
simpler case of the full-circle acquisition geometry. Suppose the 2D region of interest €2 is the
disk of radius R centered at the origin and the detectors lie on the concentric circle y of radius
R, > R (this formally corresponds to a particular case when X;igny > R and Zjgn = R,).
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Let us represent the plane wave exp(i§ - x) by the single-layer potentials supported on y

exp(i§ - x) = Wy (x, pes) + Wy (x, pey),

with the densities pg ;(z) and pg y (z) defined by the following formulae (see appendix for the
derivation)
I & JwRy) L,
pe g (2) = i" exp(in[6; — 6¢]),
27 R, ,,:z_:oo |H R
100 (7

1 Y, (AR,) . .
pey(2) = i" exp(in[0, — 6;]).
27TR)/ n;oo H(l)()\.RV)|2 z

n]

The above series converge uniformly due to the fast growth of the Hankel functions (see, for
example [9]) as the order n goes to infinity. Interestingly, in this simple case of the full-circle
acquisition, representation (7) is exact, and therefore the reconstruction algorithm described
in the previous section is also theoretically exact (in this particular case).

For future use we compute the L? norm N () of the pair of the densities (pe, 75 PeY)
defined as follows

N> = (pz.s- pen) |l = / (07 1 (2) + P2y (2)] dI(2).
Y

Due to the orthogonality of the complex exponents one obtains the following simple formula:
+00 1
N0 =)

o [HO R

In|

®)

The values of N (1) can be easily computed numerically; it turns out that for large values of A
this function grows asymptotically linearly and N (1) &~ +/2A.

3.2. Open curve y: general considerations

The case when detectors are placed on an open curve y is more complicated. In particular, in
this case equation (3) cannot be made into exact equality. Indeed, the single-layer potentials
defined by equations (1) and (2) are solutions of the Helmholtz equations in R?\y; these
functions decay at infinity as O(|x|~'/?). The plane wave with || = A also solves the same
Helmholtz equation, but it does not decay. If these two solutions were made to coincide within
the open set €2, they would also have the same behavior at infinity, which is clearly impossible.

Not everything is lost, however. Let us consider the problem of approximating
s(x) € L*(3RQ) by a single-layer potential Wy (x, p) in the form

Wao (e ) = [ H Gz = x)p(0) o), ©)
Y

where the Hankel function Hél) (M]z—x|) coincides (up to a constant factor) with the free-space
Green’s function of the Helmholtz equation

Au+22u =0,
subject to the radiation conditions at infinity. Assume additionally, that A is not an eigenvalue
of the Laplacian on € with zero boundary conditions. If s(x) cannot be approximated by

potentials (9) in the L? sense then there exists a non-zero function ¢ (x) € L?(9S2) orthogonal
to all such potentials:

/ £(x) [/ H"(Mz — x])p(2) dl(z)} di(x) =0, Vp(z) € L2 (y).
Q2 y
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By interchanging the order of integration we obtain

/ p) [/mru)Hé”(Mz - x|)dl<x>} d@) =0, Vp@ e Ly
which, in turn, iIJI/lplieS

T(z) = /BQ 1) H" (Az — x)di(x) =0 Vz € y.

Function T (z) defined by the above expression is also a single-layer potential with density
t(x) supported on 9€2. As a solution to the Helmholtz equation, this function is real-analytic
in R\ (chapter 2, [9]). Since it vanishes on y it must vanish on the whole circle
S@r,0) = {x|x} +x3 = R>}. Thus, T'(z) is the unique solution of the Dirichlet problem for
the Helmholtz equation [9] in the exterior of the disk B(r, 0) = {x |x% +x7 < Rf,} satisfying
zero boundary conditions on S(r, 0) and the radiation condition at infinity. Therefore, T (z)
identically vanishes in R*\B(r, 0). By the analyticity of the solutions of the Helmholtz
equation, T'(z) vanishes in R?\ . Let us first assume that 32 is smooth (of class C?). By the
continuity of the single-layer potentials with densities in L>(3$2) (see [15]), as z approaches
d<2 from inside of €2, 7' (z) also approaches zero (in L? sense). Since A is not an eigenvalue of
the Laplacian on €2, T (z) vanishes in €2. Now the jump condition for single-layer potentials
[15] implies that #(x) equals zero on 92, again in L? sense. This contradiction proves the
following:

Theorem 1. An arbitrary s(x) € L*>(3S2) can be approximated by potentials in the form (9)
in the L? sense. (In other words, single-layer potentials (9) are dense in L*(32).)

Let us now assume that 32 consists of a finite number of C? segments. Due to their
locality, the jump conditions obtained in [15] for L2(d<2) potentials on C? surfaces remain
valid for the smooth parts of the surface if the latter is only piece-wise smooth. However,
since all these conditions are understood in L? sense, the values in the vertices of 32 do not
matter, and our theorem holds true for any ROI with the piece-wise C? boundary.

A statement similar to the above theorem can be proven if one replaces Hankel’s function
Hél) by Héz). Therefore, the sums of potentials

Wro(x, p1) + Who(x, p2) = /

HP Mz — xDpi(z) dI(z) + / HY Mz — xD)p2(2) di(z)
Y

¥
with arbitrary densities p;(z) and p,(z) are also dense in L?(3S2). Alternatively, due to the
equations

HY2 (1) = Jo(0) £ iYo(),

the sum W, (x, p;) + Wy (x, py) can be used for approximation, where

W, (x, py) = / Jo(hlz — XDy (2) dI(2),
Y

Wy(x, py) = / Yo(rlz — x)py(2) di(z),
¥

again, under the assumption that X is not an eigenvalue of the Dirichlet Laplacian.

Our goal is to approximate the plane waves in 2 by the single-layer potentials. Due to the
uniqueness and stability of the Dirichlet problem for the Helmholtz equation, it is enough to
approximate the boundary values of these functions on 92, which can be done as explained
above—except for the case when A is the eigenvalue of the Dirichlet Laplacian. In the latter
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case, one can approximate the normal derivative of the target function by the normal derivative
of the single-layer potential. A derivation similar to the one in the beginning of this section
shows that the normal derivatives of the layer potentials anL(x)(W/ (x, py) + Wy(x, py)) also

form a dense set in L2(3%2), if A is not an eigenvalue of the Neumann Laplacian on Q.
Finally, since the eigenvalues of Laplacian on 2 may not be known in advance, it is
advantageous to use simultaneously both Neumann and Dirichlet data. Namely, in order to
approximate a solution u(x) of the Helmholtz equation on €2 by the single-layer potentials,
we form a vector function (u(x), an%u(x))‘as2 and try to approximate it in the L? sense by

the functions in the form (W, (x, p;) + Wy (x, py), %[Wj(x, p1) + Wy (x, pr)])] -

3.3. Stability and regularization

As established in the previous section, given a plane wave exp(—i€ - x), one can find

a sequence of densities (,oék}, pg;,),k = 1,2,..., such that the sum of potentials

W, (x, ,os(kj) + Wy (x, pék;) converges to the wave as described. However, in the case of
open y the sequence of densities themselves cannot have a limit in L? sense; if this limit
existed, the sum of potentials would exactly equal the plane wave, which cannot happen, as
discussed in the beginning of section 3.2.

Moreover, the sequence (,og(k}, pék;) can start growing very fast in the L? norm defined
by the formula

(s, P53 = /[Im(z)lz + 1oy (2)171dI(2).
Y

This, in particular, should occur in the situation when curve y does not satisfy the visibility
condition. Indeed, it is known that the reconstruction problem is strongly unstable, if this
condition is not satisfied [21, 25, 26, 39, 40]. On the other hand, possible instabilities in the
present algorithm are associated with densities that are strongly oscillating and large in the L?
norm. Observe that in equation (6) we compute the inner product of densities pg 7, pg,y With
functions G ; (A, z) obtained from the measured data. Any component of noise well correlated
with pz ; and pz y will be strongly amplified if these functions are large (in L* norm). This
amplification is the only source of instability in reconstructing the value of 7 (£) at a particular
point £ by our method, and it has to occur to render the reconstruction unstable—as it should
be in accordance with the theory.

Our goal, of course, is to use the present technique with the data acquisition configurations
that satisfy the visibility conditions. It is difficult to find theoretically a sharp estimate on
the behavior of some ‘optimal’ sequence of densities that would combine convergence of
potentials with the slow or no growth of the densities. Instead, we propose a regularized
algorithm for computation of ‘good’ approximations.

Let us introduce the families I' and Y of pairs of L? functions defined on y and 9<:

I = {(q1), ¢2(2)lq1, g2 € L* ()},
Y = {(p1(2), p2(2)p1, p2 € L*(OQ)}.

Define the inner products for functions from I" and Y as follows

Vasel,  (qs)r= / (D5 @ + @] @),
Y
Vp,reT, (p,r)y = / [p1(x)ri(x) + pa(x)ra(x)]dl(x).
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Further, let us introduce the operator A that maps a pair q € I" into a pair p € Y according to
the following formula

1 0
p=A(Q = <WJ(X, q1) + Wy(x, q2), Xa—[WJ(X, q1) + Wy (x, qz)]) ,
n(x) a0

where single-layer potentials W, (x, q1), Wy (x, ¢») are defined, as before, by equations (1)
and (2).

Given boundary values of the plane wave ug(x) = (exp(i§ - x), %% exp(i€ - x))yq we
would like to find a pair of functions (densities) (pg, j(z), pg,y (z)) such that

A((Pz.15 Pe.¥)) = U, (10)

subject to the requirement that the densities are ‘not too large’. There is more than one way
to find such regularized solutions; we utilize the SVD of the operator A. Namely, we find
(numerically) the sets of pairs (left and right singular vectors)q e T, p) € Y, j = 1,2, ...,
and singular values 0,01 > 03 > --- > 0, > - -, such that

@”.q)r =515, PPNy =85, PV =0,A)),
where §; ; is the Kronecker symbol (§; ; = 0if i # j, and §; ; = 1 otherwise). Now the
desired approximation is given by the sum

Jmax

(Pe.s (@) pey (@) ~ Y g (x)

j=1

L fu,p ). (1)
0j

where jnax serves as a regularization parameter. The increase in jpay yields a closer L? fit of
the single-layer potential to the plane wave, but it also may (and in certain cases will) lead to
the unbounded growth of the densities.

A frequently used regularization technique for solving ill-posed problems using the SVD
decomposition is to drop from (11) all the terms with o; smaller than a certain threshold
Omin (and thus define the jn.x). However, it is not clear how to choose such o, optimally.
Moreover, in general o, should depend on the frequency A, since the norm of the densities
may grow with A as we saw in the example of circular acquisition geometry.

Instead of choosing oy, wWe propose to use the circular case as a benchmark to
determine the regularization parameter jn,x. We found in the numerical experiments that
very good results are obtained when j,.x is chosen to be the largest number such that
(g, 7, pe,y)ll2 < KN (L), where N(1) is computed using equation (8) for the circular case
with the same values of R and R,, and K > 1 is a constant; in all numerical experiments
presented below K was equal to 1.5.

The most computationally expensive step in finding the densities is the SVD
decomposition; however, the same SVD is used for all plane waves with the same frequency
A = |&]|. Algorithmically, we computed the SVD by first discretizing the integrals that define
operator A, and by enforcing equation (10) at some set of collocation points on d€2. This
results in a matrix that represents a discretized version of A; the SVD is then computed using
subroutine DGESVD from LAPACK. In practice, the discretization of the integrals is dictated
by the number and location of the detectors; we assumed that they were distributed uniformly
over y. We also utilized equispaced collocation points on 9€2; the number of points was chosen
to be twice the number of the detectors.

One can note that although this approach guarantees bounded solutions (g s, pg,y), there
is no theoretical estimate on the accuracy of the approximation of the plane waves by the
corresponding potentials. However, when the densities have been found, it is very easy to
compute numerically the approximation error, and, if necessary, to re-run the computation
with different values of parameters.

10
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The computation of the densities (pg ;(2), pz,y(2)) constitutes the first step of the
reconstruction algorithm (see section 2). It is rather time consuming; however, for a particular
acquisition geometry it needs to be done only once.

4. Numerical examples

In order to verify the accuracy and stability of the present algorithm we conducted a series
of numerical experiments. In particular, we studied two acquisition geometries (which we
will call #1 and #2) corresponding to different values of parameters Xgn and zign:, (see
figure 1). In both geometries R and R, are equal to 1 and 1.3 respectively. Geometry
#1 has Xjgnt = Zgnw = 1; in other words, the ROI is a unit circle. Geometry #2 is
defined by values Xjgne = Zrigne = 0, which corresponds to a half-circle acquisition curve
and a half-disk ROI. Both geometries satisfy the visibility condition. In all experiments
reconstruction was performed on an equispaced Cartesian 129 x 129 grid, from simulated
projections corresponding to 500 equispaced detectors, each measuring 129 circular integrals
with equispaced radii. (The radial step in the projections coincides with the step of the
reconstruction grid under such discretization.)

The goal of our first test was to verify the feasibility of the approximation of plane waves
by the single-layer potentials. We found that the most difficult plane waves to approximate
were the ones propagating in the vertical direction. In geometry #1 the method described in
section 3.3 with K = 1.5 gave approximations accurate up to four decimal places or better.
In particular, for the plane wave propagating in the vertical direction with the wavelength
corresponding to the Nyquist frequency of our 129 x 129 grid, the maximum pointwise error
did not exceed 8 x 1076, Similar (although slightly less accurate) results were obtained in the
geometry #2.

These accurate approximations of the plane waves lead to very accurate reconstructions
of smooth images. For geometry #1 we defined a smooth phantom as follows. First, we
introduced a C§(R) function h(z):

1—t] . 8
h(t) = 1€ Jo sin*(ms)ds, 0<|r| <1
0, lt] > 1

where constant ¢y was chosen so that 4#(0) = 1. Function /A (¢) is even, compactly supported on
[—1, 1], eight times continuously differentiable on R function, with A(1/2) = 1/2. We
then used this function to construct the eight times continuously differentiable phantom
fx) = h('*:—f") + h(%), as a sum of two bell-shaped rotationally invariant functions.
For geometry #1 we used parameters x; = (0.3, 0.3), x, = (—0.4,0.2),r; = 0.55,r, = 0.5.
Reconstruction using the present method (without additional filtration) resulted in maximal
point-wise error of 7.3 x 107>, Similarly small reconstruction errors were obtained for
smooth phantoms in geometry #2. We do not present here the gray scale pictures of
these phantoms and the corresponding reconstructed images since they look identical. The
experiments with smooth phantoms show that our method indeed reconstructs accurately all
the spatial frequencies of the image (including the lower ones)—as opposed to parametrix
approximations.

Our next experiment was with discontinuous phantoms. Point-wise accurate
reconstructions are not possible with such functions due to the aliasing errors and the Gibbs
phenomenon; the goal is to obtain images that appear qualitatively correct, with low noise
amplification. As a phantom in geometry #1, we used the sum of the characteristic functions

of circles as shown in figure 2(a). Part (b) of the latter figure demonstrates the image

11
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(@)

Figure 2. Geometry #1: (a) phantom, (b) reconstruction from the accurate projections, (c) effect
of 15% noise in projections and (d) reconstruction from the noisy projections with the additional
filter.

reconstructed from accurate projections. In order to analyze the sensitivity of the method to
non-exact measurements we added to the projections white noise with intensity of 15% of
the signal (in L? norm); the reconstruction is shown in figure 2(c). As it is frequently done
in tomography, in order to reduce the effects of noise one can apply a low-pass filter on step
4 of the algorithm. Part (d) demonstrates the effect of such additional filtration, with filter
n(€) = cos (% &1/ ANyquist), where Anyquist 1S the Nyquist frequency of the reconstruction grid.
The accuracy of the reconstruction can be also judged by the graphs of the cross-sections
of the images. Figure 3 shows vertical central cross-sections of our reconstructions; part (a)
corresponds to the accurate data, part (b) demonstrates the profile obtained from the noisy
projections, and, finally, the effect of the additional filtration in the reconstruction from noisy
data is presented in figure 3(c).

Quite similar results were obtained in geometry #2. As a phantom we used again a sum
of the characteristic functions of circles supported within the ROI (the left-half of the unit
disk)), as shown in figure 4(a). Parts (b), (c) and (d) of that figure demonstrate, respectively,
reconstruction results from the accurate projections, noisy projections and reconstruction from
noisy projections with additional filtration (using the same filter as in the previous example).

In order to compare stability of our algorithm to that of the classical FBP, we have
reconstructed the two phantoms (shown in figures 2(a) and 4(a)) using the latter method, from
a similar number of the standard Radon projections with the same level of noise (not shown
here). The general quality and the level of noise in the reconstructions was quite close to those
of the images obtained by the present method.

12
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Figure 3. Geometry #1, cross-sections: (a) reconstruction from accurate projections,
(b) reconstruction from noisy projections and (c) reconstruction from noisy projections with the
additional filter.

From the practical point of view it is interesting to know how the reconstruction is affected
by acoustic sources located outside of the ROI. It is known that, with the exception of the
methods based on expansion in the eigenvalues of the Dirichlet Laplacian on a closed domain
[2, 20], all the other exact reconstruction techniques will produce incorrect results in the
presence of such sources (see [1, 13, 17] for further discussion of this phenomenon). In our
case, such sources will be present if the electromagnetic wave impinges on the parts of the
patient’s body located outside the ROI. In order to model this situation in geometry #2 we used
the previously used phantom supported within the unit disk, as shown in figure 2(a). The result
of the reconstruction in the absence of noise is shown in figure 5(a); part (b) demonstrates
the effect of 15% noise and the additional filtration. One can note in this figure that the
parts of the source located outside the ROI are not reconstructed correctly (not unexpectedly).
Nevertheless, by covering the right-half of the image, it is easy to see that the reconstruction
within the ROI is very little (if at all) affected by the presence of additional sources outside
the region. Interestingly, in the right-half of the image (outside ROI), the ‘visible’ material
interfaces are reconstructed quite well, while the ‘invisible’ ones (such that the normal does
not intersect the measuring surface) are noticeably smeared.

In accordance with the theoretical operation count, step #1 turned out to be the most
expensive part of the algorithm; in the experiments described in this section the computation
of the densities took several hours. However, this step needs to be performed only once for
a given geometry. On consecutive runs of the reconstruction program, once the precomputed
densities had been read from the hard drive, the algorithm took a fraction of a second to
complete. The time required to read the densities was about 4 s. If our method were to be used
to process the data obtained by an acquisition scheme with linear detectors (which requires
the inversion of a set of 2D problems), the densities would need to be read only once, and each
of the 2D problems would be inverted in a fraction of second.
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(d)

Figure 4. Geometry #2: (a) phantom, (b) reconstruction from the accurate projections, (c) effect
of 15% noise in projections and (d) reconstruction from the noisy projections with the additional
filter.

Figure 5. Geometry #2: (a) reconstruction with some sources outside of the ROI (compare to
figure 2(a)), (b) the same with 15% noise in the projections and with the additional filter.

5. Concluding remarks

We have presented an efficient reconstruction algorithm applicable to problems of
thermoacoustic tomography with the detectors lying on an open curve. The method is based
on L? approximations of plane waves by certain single-layer potentials; we have proven that
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such approximations are possible if the measurement curve is an open circular arch. We have
also verified numerically that for the truncated circular geometry satisfying the ‘visibility’
condition one can obtain very accurate approximations with bounded densities, which, in turn,
leads to stable image reconstructions.

In conclusion, we would like to add several remarks:

e The theorem we have presented does not restrict the shape of the ROI; it can be an
arbitrary region with a piece-wise C? boundary. Of course, for stable reconstruction
the combination of the ROI and the acquisition surface should satisfy the ‘visibility’
condition.

o In the proof of the theorem we used the fact that if the solution of the Helmholtz equation
vanishes on a circular arch, it must vanish on the whole circle, and, therefore, in the
exterior of the disk. A similar statement is also true if the acquisition curve is a part of
any closed analytic curve, and the theorem extends to such configurations. The theorem
also remains valid if the measurement curve is a continuous non-analytic curve.

e In order to use this approach with non-circular acquisition curves, the regularization
technique we presented may require some modifications, since it is based on the
comparison with the full-circle case.

e The technique we propose can also be used in 3D, for image reconstruction from the
detectors lying on an open surface. Compliance with the ‘visibility’ condition is, again,
necessary for a stable reconstruction in this case. We anticipate that the pre-computation of
the densities may become quite time consuming in 3D, due to the increased dimensionality
of the problem. The development of a fast algorithm for this part of our method is required
to make this approach practical (in 3D). This will be the object of our future research.
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Appendix

In this section we derive the exact representation of plain waves by single-layer potentials
supported on a full circle y. To this end we expand the wave exp(i§ - x) in the Fourier series
in polar angle 6, as follows:

+00
exp(i& - x) = Y i"Jp(Alx]) exp(in[6, — 6;]) (A.1)
where § = A(cosb,sinb:), x = |x|(cosby,sinéy) (this is a well-known Jacobi—Anger

expansion [9, 36]). We also utilize the addition theorem [9, 36] for the Hankel function
Hy" () = Jo() +1¥():

+00

Hy(x =z = Y H (lz) Jyu (]x]) exp(inl6; — 6:]), (A2)
n=—oo
where z = |z|(cosé,,sinf,;). By integrating equation (A.2) with the density exp(inf,)

supported on y one obtains

/ Hg" (Mz = x]) exp(ing,) dI(z) = 27 R, H, (AR, ) Ju (A]x]) exp(in6y)
Y

In|
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/H(l)(AR YH" (Mz — x|) exp(ind.) dl(z) = 27 Ry | H'Y (W R,) | Jiuy (A1x]) exp(inéy ).

n] In|

(A3)

Similarly, one obtains

/ HY ARy Hy? (A|z — x|) exp(ind;) dI(z) = 2w R, |H} (AR, [>T O11x]) exp(ind, ),
Y
(A.4)

where H\”(-) = Jo(-) — i¥o(-) is the Hankel function of the second kind. Since H® (1) =
H'" (1), adding (A.3) and (A.4) results in the following formula:

n]

: O Ry Iy (1x]) exp(iné, ).

/Re[H(”(m YHy" (Az — x])] exp(ind,) di(z) = 2R, |H ]
Y

The latter expression can be used to express the cylindrical wave J),|(A|x]) exp(inf,) in the
form

Jin|(ARy)
2R, |H) R))|?
Y (AR,)
2R, |H))) (MR, >y

Jinj (A]x]) exp(infy) = / Jo(A|z — x|) exp(inf;) dI(z)

/ Yoz — x|) exp(ind,) di(z).

Further, by substituting this formula into Jacobi—Anger expansion (A.1), one can represent
exp(i£ - x) as the sum of the single-layer potentials

& TRy,
|: Z Wln exp(in[6, — 95]):| Jo(Az — x|)dI(2)
n=—00 y

n|

exp(i§ - x) = =R
Y

1 — YuQR) .,
+2nRy / LZOO ml exp(in[6, —eg])} Yo(Alz — x]) di(2).

In|

In other words the wave is represented by the single-layer potentials

exp(i& - x) = Wy(x, pe,y) + Wy (x, pey)

with the densities

+00

1 Jui(AR))
pes(2) = P
2nRy = |HY (AR,

In|

51" exp(in[6, — O¢]),

+00

1 Y\n\()‘-Ry) -n .
pey(2) = i" exp(in[0, — 6¢]),
27 R, n;oo HY R

n|

as mentioned in section 3.1.
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