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Abstract
Thermo- and photo-acoustic tomography require reconstructing initial acoustic
pressure in a body from time series of pressure measured on a surface sur-
rounding the body. For the classical case of free space wave propagation,
various reconstruction techniques are well known. However, some novel
measurement schemes place the object of interest between reflecting walls that
form a de facto resonant cavity. In this case, known methods (including the
popular time reversal algorithm) cannot be used. The inverse problem invol-
ving reflecting walls can be solved by the gradual time reversal method we
propose here. It consists in solving back in time on the interval [0, T] the
initial/boundary value problem for the wave equation, with the Dirichlet
boundary data multiplied by a smooth cutoff function. If T is sufficiently large
one obtains a good approximation to the initial pressure; in the limit of large T
such an approximation converges (under certain conditions) to the exact
solution.

Keywords: photoacoustic tomography, thermoacoustic tomography, time
reversal, resonant cavity, reflecting walls, wave equation

1. Introduction

Thermoacoustic tomography (TAT) [23, 44] and photoacoustic (or optoacoustic) tomography
(PAT/OAT) [9, 22, 33] are based on the thermoacoustic effect: when a material is heated it
expands. To perform measurements, a biological object is submerged in water (or hydro-
acoustic gel) and is illuminated with a short electromagnetic pulse that heats the tissue. The
resulting thermoacoustic expansion generates an outgoing acoustic wave, whose pressure is
measured on a surface (completely or partially) surrounding the object. Next, an inverse
problem is solved in order to image the initial acoustic pressure within the object. This
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pressure is closely related, in particular, to the blood content in tissues. Blood vessels and
cancerous tumors produce much higher pressure; accordingly, TAT and PAT are effective for
cancer detection and for imaging vasculature in small animals.

During the past decade, the mathematical foundations of TAT and PAT have been well
investigated. Significant achievements include, in particular, results on general solvability and
stability of the underlying inverse problem [2-7, 37, 41], explicit inversion formulas
[16, 17, 25, 27, 29, 32, 34, 36, 38, 47], and efficient computational methods
[10, 19, 26, 30, 31, 46]. One of the active areas of current research is the so-called quantitative
PAT [13, 35, 42] which aims to recover, in addition to the initial pressure, optical properties
of the tissue (e.g., Griineisen coefficient) and the fluency of electromagnetic radiation as it
propagates through inhomogeneous tissue.

However, practically all existing theory of TAT/PAT is based on the assumption that
acoustic waves propagate in free space, and that reflections from detectors and the walls of the
water tank can be either neglected or gated out. In this case, acoustic pressure p (¢, x) within
the object vanishes quite fast (in a finite time if the speed of sound is constant within the
domain). In this case the inverse problem of TAT/PAT can be solved by ‘time reversal’, i.e.
by solving backward in time the initial/boundary value problem for the wave equation, with
the Dirichlet boundary values equal to the measured data (see, for example,
[3, 10, 19, 20, 40, 41, 46]). Vanishing (or sufficient decrease) of the pressure in finite time 7’
allows one to initialize this process by setting p (7T, x) and its time derivative p, (T, x) to zero
within the domain 2. Time reversal yields a theoretically exact reconstruction if the speed of
sound is constant or if it satisfies the so-called non-trapping condition (see [3, 19, 20, 40, 41]
for precise definitions and results). This method can be implemented for a general closed
acquisition surface and known speed of sound using finite differences; it can also be realized
(for simple domains) using the method of separation of variables, or, for certain geometries,
replaced by equivalent explicit backprojection formulas. Other reconstruction algorithms,
although not related directly to time reversal, also require the vanishing of pressure.

However, free space propagation cannot always be used as a valid model. For example,
one of the most advanced PAT acquisition schemes (developed by researchers from the
University College London [15]) uses optically scanned planar glass surfaces for the detection
of acoustic signals. Such surfaces act as (almost) perfect acoustic mirrors. If the object is
surrounded by such reflecting detectors (or by a combination of detectors and acoustic
mirrors), wave propagation occurs in a resonant cavity. It involves multiple reflections of
waves from the walls, and, if the dissipation of waves is neglected, the acoustic oscillations
will never end. Traditional time reversal and other existing techniques are not applicable in
this case; new reconstruction algorithms need to be developed for TAT/PAT within resonant
cavities.

In [24] the authors jointly with B T Cox developed such an algorithm for a rectangular
resonant cavity. That method is based on the fast Fourier transform and is computationally
very efficient; however, it is not easily exteneded to other geometries, and it cannot handle the
case of variable speed of sound. (Other approaches to the inverse problem within resonant
cavity include [11, 12, 43]; in [8] an approximate solution is obtained assuming that the
sources of sound wave are small inclusions.)

In the present paper we investigate the possibility of solving the inverse problem of TAT/
PAT in a resonant cavity by a modified time reversal technique. Here we understand time
reversal in a general sense, without specifying the particular computational technique used to
solve the underlying initial/boundary value problem numerically (although in our simulations
we used an algorithm based of finite differences). Since (in the idealized setting) the acoustic
energy is preserved within the domain, initializing classical time reversal by setting
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p(T, x) = p(T, x) =0 for any value of T would introduce an error of the same order of
magnitude as the initial pressure we seek. Instead, we propose a version of time reversal
where the boundary data are multiplied by a smooth cutoff function equal to 1 at times 7 close
to 0 and vanishing at ¢ = T together with all (or, at least, several) derivatives. This technique,
which we call gradual time reversal, can be initialized by p, (T, x) = p(T, x) = 0. As we
show in the paper, such an approach yields a good approximation to the sought initial
pressure p (0, x) if T is sufficiently large. Moreover, under rather generic conditions this
approximation converges to p (0, x) in the limit T - oo.

It should be noted that the use of a smooth cutoff function in combination with time
reversal is not a new technique. It was utilized, for example, in [20, 40, 41] for solving
problems of traditional free-space thermo- and photo-acoustic tomography in situations where
pressure does not vanish in finite time. In this case, initializing time reversal by non-zero
boundary data and zero initial conditions at # = T introduces into the image singular artifacts.
The use of a smooth cutoff eliminates these spurious singularities and, thus, improves the
result (although the smooth component of the error vanishes only if 7 goes to infinity).
However, for large values of 7, the magnitude of these singularities is small, so that an
acceptable approximation can be obtained by time reversal even if a smooth cutoff is not
applied. The situation is drastically different in the case of a resonant cavity: in the absence of
a smooth cutoff the error is not small for any value of 7. We use the term gradual time
reversal in order to distinguish the converging method that uses a smooth cutoff from the
non-convergent technique that does not.

The rest of the paper is organized as follows. In the next section we give a precise
formulation of the problem. Section 3 presents the gradual time reversal algorithm and the
theorems establishing weak convergence of this technique under some rather generic con-
ditions. In section 4 we consider circular and rectangular domains where stronger con-
vergence results can be obtained; in particular, we prove strong convergence in H'(£2) of
gradual time reversal in a circular domain. Several results of numerical simulations are also
presented in the latter section to demonstrate the practicality of the present method. The paper
is concluded with an appendix containing an auxiliary theorem on relative spacing of the
zeros of Bessel functions and their derivatives (needed in section 4 to analyze convergence of
graduate time reversal in a circular domain).

2. Formulation of the problem

The pressure differential u (¢, x) within a reverberant cavity is a solution to the following
initial/boundary value problem:

-

2
! a—u(t, x) = Au(t, x), x€ Q, te [0, o),
c?(x) or?
3 u(, x) = f(x), %(0, x)=0, x€Q, (D
w2 _ 1€, tel0, o),
L on

where X is the boundary of the bounded domain £ C R? formed by the walls of the cavity, ¢
(x) is the known speed of sound within the cavity, n is the exterior normal to €2, and % s the
normal derivative of u. The measured data U (¢, z) coincides with u (¢, z) on a partnof the
boundary X, C ¥ (X; may in some cases coincide with the whole X):
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U(t,z) =u(t,z), z€2%2, te]l0, ).

Our goal is to reconstruct the initial condition f (x) from U (z, 7).

In the setting of traditional PAT/TAT, wave propagation occurs in the whole space (the
reflection from the detectors is assumed to be negligible). In the simplest case of 3D wave
propagation with constant speed of sound the pressure vanishes in £ after a finite time ¢ = T.
If, in addition, X; = X, the initial pressure f (x) can be found by time reversal, i.e. by solving
the wave equation in Qr = Q X [0, T] backward in time from 7 =T to ¢ = 0. One imposes on
such a solution # initial conditions # (7, x) = 0 and %(T, x) =0, and forces ii(t, z) on
2 x [0, T] to be equal to the measured data U (¢, z). Then, so-computed values of i (0, x)
coincide with f (x). This method also works in 2D and/or if the speed of sound is variable
(but non-trapping), in the limit of a large 7.

However, in the case of perfectly reflecting boundaries we consider here, the energy of
the acoustic waves is preserved, and u (¢, x) remains of the same order of magnitude for all
values of ¢ € [0, oo]. Since values of the pressure (and its time derivative) inside £2 cannot be
measured, there is no accurate way of initializing time reversal. Simply replacing the
unknown values u (7', x) and ‘;—':(T, x) by zero would introduce an error proportional to the
energy of the acoustic waves at the time 7', which will propagate toward ¢ = 0 and create
artifacts roughly of the same order of magnitude as f (x).

Below, we show that a good approximation to f(x) can be obtained by solving a modified
time reversal problem; we will call this technique gradual time reversal.

3. Gradual time reversal: general considerations

Let us introduce an infinitely smooth cutoff function a (¢) defined on [0, 1], identically equal
to 1 within some neighborhood of 0, and vanishing with all its derivatives at 1. Gradual time
reversal consists in solving backward in time the initial/boundary value problem for the wave
equation with zero initial conditions at t = T, and boundary conditions equal to U (¢, z)a (et)
where € = 1/T on X. On the rest of the boundary X, = X\ X, where Dirichlet data are not
available, we impose zero Neumann boundary conditions:

1 0%,
(t, x) = Av(t, x), xeR, te[0,T], T=1le,
c?(x) ot?
T.x=0. Yq.9=0 Q
<VE( ,.X)— s 5(7)6)_ ) X € s (2)
ve(t, 2) = U(t, 2)a(en), z€ 2, t€l0,T],
w62 _y, z€ %, telo, Tl
| on

As we show below, for sufficiently small values of € (or, equivalently, large values of 7),
v (0, z) is a good approximation to f(x), and in fact, under certain conditions v.(0, z)
converges to f (x), as € — 0.

3.1. Some facts about the forward problem

In the rest of the paper we will assume that the speed of sound c(x) is a known, twice
differentiable function bounded from above and below in £2:
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0< Cmin < C(.X) < Cmax» Vx € ‘Q_’

and the boundary X is piece-wise smooth. The initial condition fis assumed to be compactly
supported within £ and be an element of the Hilbert space H'(£2) with the inner product
[.,.]ut and the norm || || defined, for any Vg, h € H'(£2), as follows

1 — _
(g, bl = fg{c2 ¢ + Ve Vhoc)}dx, I lls = T, Rl

Since a classical solution of the wave equation may not exist under these assumptions,
we will understand the wave equation (1) (first line) in the weak sense:

1 2
Ly

where (.,.)r, stands for the inner product in L, (£2) when applied to scalar functions:
(6.1, = [ gRGIdr, Ve h € Lo@);
expression (Vg, Vh),, is understood as follows
(Vg, Vh),, = fg Vo) - Vhdx, Ve, h € H'(Q). @)
It is known [28] that under these conditions there exists a unique solution u (¢, x) of (3) in
the class C (0, T; H'(22)) on Oy = (0, T) X £, whose time derivative %’(t, x) and the first

. . 0 .
order space derivatives gu_(t, x) are L, functions on Q7.

J
Using separation of variables, this solution can be found in the form of a generalized
Fourier series. In order to accomplish this, one finds the eigenfunctions ¢, (x) of the weighted
Neumann Laplacian on £:

1, 9¢,(2)
CZ(X))“V! (pn(x)’ an

=0, n=1,23, ..,
=

_A%(x) =

where 4 nz are the corresponding eigenvalues, in non-decreasing order with 4; = 0 and 4, > 0.
In general, eigenfunctions ¢, (x) can be found in the class H'(Q); they are pair-wise
orthogonal with respect to the weighted L, inner product

[ _
(g M= [ S ¢RI Ve € (2. P W) 5)

so that
<§01, §0n>672 =0, ifl #n. )

Assume that these eigenfunctions are normalized with respect to the weighted L, norm:

lollee = [(op o) , =1, 1=1,2,3, ... (7)

It is known that, with such normalization, these eigenfunctions are also orthogonal with
respect to the inner product given by equation (4):

(Ve v%)LZ =0, ifl#n, (Vo Vgol)Lz =22, 1=1,2,3,.... (8
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By utilizing ¢,’s, the weak solution of (3) can be found in the form of the series

u(t, x) = Zu,,q;l(x) cos (A,1), 9)

n=1

with Fourier coefficients u,, found from the initial condition
=(fo@) . =123 ..

We note the Parseval’s identity and a related inequality

[s9)

(0, ) 1P = Y Juaf

n=1

; (10)

[c)

e, ) IR, =

Z|u,, . (1)

Also, since f € H'(£), the following bound on u, holds with some constant Ej

n=1

[iwrtar = YAk juf = Eo < 11 (12)
n=1
Now, if one defines energy E(f) by the formula
1| ou 2 5
En = [ 20| +1Vu, op [dx, (13)
e c(x) | ot

this energy will be conserved, i.e.
E@t)=EQ0) =

This can be easily verified either by substituting n = X into (3) and integrating from O to ¢ in
time, or by substituting the series representation (9) into (3) for both u and # = u, and using
the orthogonality relations (6)—(8).

Let us also find uniform (in 7) bounds on the solution u and its time derivative. A bound
on Z—’:(z‘, x) for any ¢, in the weighted L, norm follows from (13):

ou ||
|5 = /5t oPax < B = [ 1Pac< Iy re 000 a4)
ol Je )
In turn, u(¢) can be bound by combining (11) and (12):
Nl < X Juaf < i + X Juaf” < AR + 2 A7 Juf’
n=1 n=2 n=2

<R + = AR (1 +—] IfI, . 1 €10.00).  (15)

3.2. Convergence of gradual time reversal

We would like to show that, under certain conditions, the solution v (0, x) of the gradual time
reversal problem (2) converges to f (x) as € - 0. We will represent v, (¢, x) as a sum of two
functions
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Ve(t, x) = u(t, x)a(et) + we(t, x), (16)
where u (¢, x) is the (unknown) solution of the forward problem. Since
Ve (0, x) = u(0, x) + w. (0, x) = f(x) + we (0, x),

function w, (0, x) represents the error introduced by gradual time reversal into the
reconstruction; we would like to show that it becomes small as ¢ — 0.

The first term in the right-hand side of (16) accounts for the known Dirichlet boundary
values on X, so that w, (¢, x) satisfies zero Dirichlet conditions on X; and the zero Neumann
boundary values on X,, for all values of #:

W&‘(t’ Z) = 0’ zZ € 217

ow, (1, z te [0, T]. 17
W()(HZ):O,ZeEz, [0, T] (17)

Also, since the derivatives of a (et) vanish att = T,

ow (T, x)

w. (T, x) =0,
(T, x) o

0, xegQ. (18)

By substituting (16) into the wave equation (formula (2), first line) and taking into
account (1) we obtain

1 0%, 1
200 o (t, x) — Aw(t, x) = Cz—(x)Fs(t, X), (19)
F.(t,x) = —E(Za’(st)(;—btt(t, x) + ea” (et)ult, x)). (20)

It follows that w;. (¢, x) solves the initial/boundary value problem for the wave equation (17)—
(19) with the right-hand side given by (20). Since u, Z—L: € L?(Qr), the right-hand side F, (¢, x)
is also an L, function on Qr, and the wave equation (19) should be understood in the weak
sense:

1 0°w, 1
(; atz (t, . )’ r]())LZ * ( sz(t’ . )’ Vﬂ( ' ))Lz [C2—(X)F;(t, ' )’ r]())LZ

=(F.n)

&

for all values of t € (0, T) and for all #(x) € C*(£) and vanishing on X;.

3.2.1. Boundedness of w.. Our first step is to show that the error w;, (0, x) remains bounded
as € — 0 (or, what’s the same, as T — o0). It is known [28] that the unique solution w;. (¢, x)
of the initial/boundary value problem of our type with an L, right-hand side can be found in
the class H'(0, T; H'(£2)), and that the first time- and space-derivatives of w, are L, functions
on Q7. Moreover, using separation of variables this solution can be found in the the form of a
generalized Fourier series. To this end one utilizes the eigenfunctions y;, (x), k =1, 2, 3, ...
of the weighted Laplacian on £ with mixed boundary conditions, with the corresponding
eigenvalues ykz, k=1,2,3,...:



Inverse Problems 00 (2015) 000000 B Holman and L Kunyansky

1
4wm=§6¢mm,
aWk (2)

n =0. 21

l//k (Z) |2] = 03
P

Properties of these eigenfunctions are similar to those of the Neumann eigenfunctions: they
exist in H'(£2) and satisfy the orthogonality conditions:

(viow) =0, ifl#n. (22)
We again assume that y;,’s are normalized with respect to the weighted L, norm, i.e.
lyll= =1, k=1,2,3, ..., (23)

and we will use the fact that the gradients of these eigenfunctions are orthogonal with respect
to the inner product (4):

(Vi Vy/n)Lz =0, ifl#n, (Vi vl,/l)Lz = 1=1,2,3, ...

Now, w, (¢, x) can be represented in the form of the following series:
Wwe(t, X) = Y wi (D (v), (24)
k=1

wy (1) = (wg(z, x), y/k> k=1,2,3,..., te]0, o). (25)

-2°
o2

(In the above formula Fourier coefficients wy(f) depend on &; however, for brevity this
dependence is not reflected in our notation.) Due to orthogonality of y, (in the sense of (22))
each of the coefficients wy(¢) satisfies the differential equation

Wi (0 + viwe() = B, B = (Fo yy) s
we(T) =0, wi(T)=0. (26)

These equations are also understood in the weak sense. Since equations (26) are solved
backwards in time, the corresponding causal Green’s functions @, () have the following form

sin (vt) £50
o) =1 v ’ 27)
0 r<0.

Thus, solutions of (26) at time ¢ can be represented as convolutions of the right-hand sides
with the corresponding Green’s functions

Vewy () = [T Fo(t) by (¢ — )dr = /IT (o) sin (i (z — 0)de,

so that at time ¢ = O one obtains

Vewy (0) = fo " F(o) sin (oydr, wi(0) = — fo " Fo(@) cos (). (28)

Then, by Cauchy—Schwarz inequality,

T T
o O < T /0 [F@fdr,  wiOf <T /0 |Fu(o)dr. (29)
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oW,

Due to the boundedness of . and Vw, in L,(£2), one can define the energy of the
solution w, by a formula similar to (13)

1 oW,
B0 = /sz[c%c) ‘ a &Y

Using series representation (24) and the orthogonality of y,’s:

2
+ | Ve, x)|2]dx.

o

E, (1) = Z(|w/é(t)|2 + |Vka(t)|2)~

k=1
Let us substitute into this equation bounds on v, wy (0) and on wy (0) (equation (29)) and apply
Tonelli’s theorem and Parseval’s identity:

1 S T T T
—E,0<Y [ |Aolda= [ Ylaold= [ 15 R d (30)
2T =170 O k=i 0

Using (20) and recalling that ¢ = 1/T one obtains

1 , ou : 1,
IF@ ) 12 < = | 41’ || —(, x) + — la" )P llu, x) |12, |- (31
¢ T2 ot -2 T2 ¢
Let us assume that 7 > 1, and that
max a’(s) = Ay, max o’ (s) = A,. (32)
s€[0,1] s€[0,1]

Combining (31), (32) with bounds on u and ‘;—’: (equations (15) and (14)) we find a time-
independent bound on || F.(z, - ) ||§_2:

1 ou 2
)12 _ 2| 22 2 2
B - ) IR < T2(4A‘ 5 9|, 47 lue o ||L.z]
1 1 Ci(2, a)
< —2[4A3 - (1 + —2]A§] 1B < =222 11 F 1R, (33)
T A5 T

with
2 1 2
G2, 0)=[4A7 + |1+ A5 |
A3
Finally, by substituting (33) into (30) we obtain

T Ci(Q2, a)
E,O <27 fIfy [ =55 e = 2602, @)l 1.

This allows us to obtain an estimate for || w; (0, - ) ||12L,1- Indeed

(o]
2 2 2
ey = w2+ 1 Vw2 = 3 (il + ool
k=1
1 5 1
<| =+ 1 1vwiB <| — + 1]
21 2
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so that

1 1
lIwe (0, ) 12, < [—2 + I)EWm) <26,(L, oe)[—2 + 1] (VAR
12 Yy

which implies the following.

Proposition 1. Under the assumptions on 2, X, and f made previously, the error w, (0, - )
remains bounded in H' (Q) independently of € (or, equivalently, of T ):

1
Iwe 0, =)l < \/2C1(-Q, a)(—2 + 1] I g (34)

Y

3.2.2. Weak convergence. In this section we will show that wy (0) converge to 0 as ¢ — 0.
To this end, let us again consider differential equations (26) on coefficients wy (¢). The right-
hand sides Fy (f) of these equations equal

F.() = <Fé(t, DRAE )>C_2 = —¢ < [Za’(et)g—b: + sa”(et)u], y/k>

2

2

=¢ < [Za’(et) Zunq)n(x)/in sin A,,t — ea” (et) Zungon(x) cos lnt], 1//k>

n=0 n=0

= iun[Za’(st)/ln sin (A,1) — ea” (et) cos (/1,,l)]<l//k, %>

n=1

2’
Solutions of these equation given by (28) can be re-written in the form

viwe(0) = Yl i) (w 4,) (35)

n=1

2
with
/e
Li(e)=e / [ 2’ (e1)A, sin (A,t) — ea’ (1) cos (Ant) | sin (vy2)de
0

= /l [2(1’(1)/1,1 sin (4,7/¢) — ea’(z) cos (xlnr/e)] sin (v t/e)dr
0

1 _
=1, / 0/(1)[005( An = Uk 1) - cos(ur)]dr
0 € €
1 _
+ %fo a”(r)[sin( A . ykr) - sin( An : ykr)]dr. (36)

Let us find bounds on , ; (¢) in the generic case when the eigenvalues of the Neumann
Laplacian, and the Laplacian with the mixed boundary conditions (21) do not coincide, i.e.,

An #F Uk, Vn, k. 37

In order to bound the integrals in (36), we extend function a’(7) evenly to the interval
[—1, 1] and further to (—oco0, o0) by zeros. Let us denote this extended function by a,"(z); it is
infinitely smooth on R;. Similarly, we extend a”(z) in an odd fashion to the interval [—1, 1]

10
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and further to (—oo, o) by zeros, and denote the resulting infinitely smooth function by
a5 (7). Then the integrals on the last line in (36) are equal (up to a constant factor) to the
values of the Fourier transforms of ;" (r) and a5 (z) at the frequencies (1, — v;)/¢ and
(An + vi)/e

@) =2 (@ (40 = )/e) = ai (2 + )/e))
# V2 (i ((dn = ) ) = (0 + 00)2))

where the Fourier transform £ (&) of function h(x) is defined as

+00 .
h(x)e*édx.

7 -

Since both a,"(7) and a; (z) are finitely supported and infinitely smooth on R;, for any integer
M one can find a constant B(M) such that

V27 |a *(5)] B( )M, andm@(é)\<%.

Now I, 4 (¢) can be bounded by the following expression (assuming ¢ < 2):

h(g) =

M M
Lk ®)] < 4 eMB (M) eMB (M) :
eM 4+ ﬂn—vk‘M eM + (A + 1)
L £ eMB (M) N eMB (M)
20 M+ n_Vk|M eM + (A + i)Y
M
< (dp 4+ 1) 2B (38)
n — Vk|M

Inequality (38) combined with (35) can be used to find a bound on coefficients wy (0):

d - 2eMB(M
ek @] < Yl [ )| @] < D Juen] (2 + 1) 22D 39
n=1 n=1 }’” - I/k|
S 2€MB(M) Z + Z|’1nun| !
i V. vkl el 7
-~ 1
<2eMBAD(NIflle= + 11 VAl Z—|
n=1|An — Vk
— 1
= 2eMBO) IIfller S —— (40)
n=1 ln - Uk|

where we took into account that |(y,, ¢,).| cannot exceed 1, |u,| cannot exceed the
weighted L, norm of f(x), and |u,A,]| is less than or equal to the L, norm of | Vf]|.

It is well known (see for example, [18] and references therein) that the eigenvalues 1,
grow without a bound as n — oo; the asymptotic rate of growth is

11
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Iy ~ Co(82, ¢(x))ni,

where C, (€2, c(x)) is a domain-dependent positive constant, and d is the dimensionality of
the space. This implies that for sufficiently large values of M (e.g., M > d) the series in (40)
converges. This, in turn, yields a convergence result for each |wy (0)|:

[we (0)| < C3(M, k) || fllgr €™ =, 0

with

l — 1
Cs(M, k) =2BM)—y —.
Vk rg V'n - Uk|M

On the other hand,
[Ty = O ) (Vo W), = (14 57
Therefore
| U widin| < CaM, K) Ifllr €™ — 0 (41)
with
(1 + u,f) % |

)

Cys(M, k) =2B(M) e
n=l|/1n - l/k|

(42)
Vk

We have thus proven the following.

Theorem 1. Under the assumptions on §2, X, and f made previously, and under the
condition (37), the result v, (0, - ) of gradual time reversal converges to f weakly in H'(Q) as
e = 0 (or, equivalently, as T - ).

Proof. The error w, (0, x) = 1,.(0, x) — f (x) remains bounded in H' () (see (34)), and it
satisfies (41) for all y. ]

Remark 1. In general, decay of the coefficients wy (0) as € — 0 is not uniform in k. The

1+

factor in (42) is growing as k — oo, and there is no reason to expect the sum of the

vk
series in (42) to decrease in k in the general case.

3.2.3. The case of coinciding eigenvalues.. Weak convergence was proven in the previous
section by showing that all the coefficients I, x (¢) in (35) converge to 0 as € — 0, in the case
when the eigenvalues 4, and v, do not coincide (see equation (37)). Let us now analyze the
behavior of the error w,.(0, x) if, for one pair of numbers ny and k,, the eigenvalues do
coincide (i.e. 1,, = 14,) but all the other pairs are still distinct. Formulas (38) and (40) remain
valid for all k # k. For k = kg and n = n( equation (36) simplifies to

12
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1
=g, / a'(r)dr = —yy,.
0
Equation (35) for k = ky now becomes
1 o0
Wi ) = | — D ttaluse @ (i @) | = e (Wi 4, )

Vky n=1
n#ng

2"
o2

s

It follows that, in addition to the error term converging to 0 as € — 0 (shown in parentheses in
the above formula), the total error w,. (0, x) will contain an additional term equal to

_uno < I‘”ko’ Qﬂno > C_ZWkU ()C)

Unless (y, @, ) happens to equal O (simple examples show that this may or may not
happen), the reconstruction will have an error term that does not depend on ¢ (or 7'), and thus
the gradual time reversal algorithm will not converge to f.

Clearly, if there are several pairs of eigenvalues (’1"/’ z/kj), j=1,.J,,J < o0, such that
An; = vy, and (l;/kj, @, Ye-2 # 0, the reconstruction will contain a non-decaying (with €) error
giVen by the following expression

_i”n,<l//k/’ q’n/> _zl//kj(x). (43)

j=1 ¢
The number J of error terms in the above sum can happen to be infinite. In this case (43) is a
converging series in H' (), since in this space the error is bounded per proposition 1.

4. Particular cases

Stronger convergence results can be obtained for simple domains where eigenvalues of the
Laplacians with proper boundary conditions are known. Below we show that in the case of a
circular cavity (in 2D) gradual time reversal converges strongly in H' () if f(x) also belongs
to the latter space. We also analyze the case of a rectangular resonant cavity with full and
partial data (i.e. data measured on only one side of the rectangle) and obtain somewhat
unexpected results on weak convergence in such cavities.

4.1. Circular cavity

Let us consider a particular case where the domain £2 is the unit disk in R? centered at the
origin, with the boundary X = S'. The data U (¢, z) are measured on all of X (i.e., 2| = X),
and the speed of sound is constant. Without loss of generality we will (as we may) assume
that ¢ (x) = 1. Now the weighted product { - , - ). and the norm || - ||.2 coincide with their
standard counterparts ( -, - )z, and || - ||,. Under the assumptions we made the error w; (¢, - )
satisfies the zero Dirichlet boundary conditions on X. The eigenfunctions y, and ¢, are those
of the Dirichlet and Neumann Laplacians on the unit disk, respectively. They are normalized
in L,, and in polar coordinates (r, 8) can be expressed using double index notation as

13
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Wi (s 0) = Dy i) (vimn)e™,  keN, meZ,
0, (s 0) = Ny (vpn)e®®, neN, ez,

where the eigenvalues vy |, and vy coincide with the zeros j \,, and j; , of the Bessel
functions and their derivatives

Vim| = Jijm|> J|m|<jk,|m|> =0, keN, meZ,
ﬂn,l]l = j,,;]|1|9 ‘]|}|(jn,|l|) = 0, n E N, l E Z,

and where the normalization constants Dy ,, and N, ; equal

1
1 -2 1
Diwm= (271'/ J|3n|(1/k,|m|r)rdr) =—————, mE Z, keN,
0 ﬁ‘Jm(Uk,an

1
2

-3 2 h
Nn,1=(2ﬂfol JI%|(/1n,|z|r)rdr) = [n[l - AIT}AIZ(/I”J”)] ,

|l

foralll € Z, n € N, except the case (n, [) = (1, 0), when Ny; = l/ﬁ.
Now, the forward problem has a solution in the form

o o

w(t, r, 0) = Y7 Yiunigp,,(r, )& cos (L), (44)
[=—con=1
where Fourier coefficients u,,; are related to the initial condition u (0, r, 8) = f (r, 8) by

wni=f h = (F00), - (45)

Since u (0, r, 0) = f(r, 0) € H'(Q),

(@, r, OB, = IFIZ = Y D

[=—con=1

Up,1

(14 42) <o (46)

As before, v.(t, r, @) represents solution of the gradual time reversal problem, and
w.(0, r, 8) = v.(0, r, @) — f (r, O) represents the error of approximating f by v.(0, r, 8). We
expand w (0, r, 8) in the series of y, , (r, )

(e

We(t, 1, 0) = D > Wk (D, (1, ),

m=—ocok=1

Wm,k(t) = (Wg(ta ) Wk’m)LZ’

and apply the theoretical considerations of section 3.2. Equation (26) in the notation of the
present section takes the form

WL (O + VW) = Fem®, Fon® = (B wi)

Wiem () = 0, wim(T) =0, (47)
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where
E.(t, r, 0) = —e(Za (et) (t r, 0) + ea” (et)u(t, r, 6))

Differential equations (47) are solved the same way as before. Taking into account the
orthogonality of the eigenfunctions v, ,, and @, ; with m # [, we thus obtain

l/kmwkm(o) Zunm nkm(g)(l//](m’ %m) 5

n=1
Do (€)= & /0 v [ 20 0) s sin (Aot

— ea’(et) cos (/1,1,|m|z)] sin (v t)dr, (48)

fork, n € N, m € Z. Since for each fixed m the eigenvalues 4,,,,) and vy, do not coincide,
conclusions of section 3.2.2 apply. Namely, from (39) we obtain

1
( n,|m| + 1)—M’
nlm| = Vk,|m|

mez, (49)

|t Wem (0)| < 2eMB (M) Z

n=1

ul‘t m

where the series converges for any M > 3.

It is well known that the zeros of the Bessel functions and their derivatives becomes
asymptotically equispaced for large n and k, and the difference between the closest 4, , and
Vk.m becomes close to 7/2. One can prove a stronger statement (see appendix): there exists a
constant Cs such that the distance between A, , and vy, is bounded uniformly in m from
below, namely

Anm = Vem| 2 Cs |20 = 2k + 1], VmeZ. (50)

Now (49) can be re-written as

Mnm|(in,|m| + 1)
|2n — 2k + 1|M °

2eM B(M) Z

‘Vk,mwk,m(o)| B meZ. (51)

Let us estimate the factor |u,, ,|(As,|m| + 1) in the above formula as follows

oo

[tnm| (A + 1) < JZ\un,m\z(ﬂn,|m| +1)

n=1
oo
< J 2y
n=1
substitute it in (51) and take the root outside of the summation sign thus obtaining

Z‘yk,mwk,m(o)‘2 < (AZ‘T Un,m z(inzlnﬂ + 1)
k=1

un,m‘z (l,z|m| + 1) ,

(52)
; 2n — 2k + 1M
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The last series in the above equation is convergent and can be uniformly bounded:

(o] 1 (o] [s9)

e S — — =,
Son - 2k + 1M Zoo|2n — 2k + 1M Z |21+ TCE

This allows us to simplify (52) further:
< 2 < 2
Z‘yk,mwk,m(o)‘ < C7 (M)SM z Up,m (/1"2,|m| + l),
k=1 n=1
4B(M) 1
where C;(M) = . (53)
’ ch ) 120 + 1M

Finally, we can find a bound on ||w;. (0, r, ) ||g'.. First, we notice that

2 2 2 2
e = el + 190 = Y (o’ + i)
z

me
keN
1 2
< e +1 Z ‘Vk,mwk,m 5
DI,O mez
keN

for any ¢ € [0, o). By combining this inequality (taken at t = 0) with (53) and taking into
account (46) we obtain

1w 0, 7, 0) 12, < (— + 1] > pewemO)f

meZ keN

=C;(M)eM [—+ 1] >y

meZ neN

u,,m| ( njm| 1),

1
= c7<M>eM[—2 + 1] £, = 0

Yo

Thus, we have proven the following

Theorem 2. If Q is the unit disk in R?, the data are measured on the whole circle (i.e.,
2 = S'), the cutoff function a (t) satisfies the assumptions made in section 3.2, and the initial
pressure f € H'(Q), then the result v, (0, - ) of gradual time reversal converges to fin H' (§2)
(strongly), as € - 0 (or as T — ).

4.1.1. Numerical example. The following numerical example illustrates how gradual time
reversal works in a circular domain. In our simulation the phantom was modeled by a sum of
three rotationally symmetric smooth functions defined on the unit disk, as shown in
figure 1(a). The measurements were simulated by tabulating the series solution
(equations (44) and (45)) at 1024 equispaced points on the unit circle that represent
detectors. Two reconstructions were computed using gradual time reversal with 7= 5.3 s and
T =10.6 s of model time. (For comparison, 2 s of model time is the time needed for a wave to
propagate once along the diameter of the disk.) These computations were performed using an
efficient algorithm [21] for solving the wave equation on a reduced polar grid in a circular
domain. The reconstructed images are shown in figures 1(a) and (b), correspondingly. While
the reconstruction with 7' = 5.3 s is not quite accurate, the image corresponding to 7= 10.6 s
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(a) Phantom (b) Reconstruction, 5.3 sec. (c) Reconstruction, 10.6 sec.

(d) Central horizontal cross-sections of images in (a)—(c)

Figure 1. Reconstructions in the unit disk with model measurement times 5.3 and
10.6 s; (d) shows central horizontal cross sections of the images, with the gray line
corresponding to (a), dashed line showing (b), and solid line representing (c).

looks quite close to the original in a gray scale picture. Simulations with larger T (not shown
here) yield images that are very close to the phantom not only visually but quantitatively
as well.

4.2. Rectangular cavity

A rectangular resonant cavity arises naturally when the object is surrounded by flat detector
assemblies that act as reflectors (see, for example, [24]). A very fast Fourier-based recon-
struction algorithm has been developed by the authors jointly with B T Cox for such a
configuration. However, gradual time reversal using finite differences on a Cartesian grid is a
much simpler (although slower) method, and, unlike the former algorithm, it can be easily
implemented for a variable (but known) speed of sound. In addition, the simplicity of a
rectangular domain allows us to illustrate several interesting properties of gradual time
reversal.
For simplicity, we present below the 2D case; extension to the 3D is straightforward.

4.2.1. Time reversal with full data. Square domain. First, let’s assume that the domain €2 is a
square (0, z) X (0, ) and that the data are measured on the whole boundary, i.e. £, = X. Itis
convenient to number the eigenfunctions using double indices. In particular, the
eigenfunctions ¢, ; and eigenvalues 4, needed for solving the forward problem are those
of the Neumann Laplacian on £2:

@,,(x) = N,y cos nxy cos Ixy, A5 =n>+1% n,1=0,1,23, .., (54)
. o 2 . 1 V2

with normalization constants N, ; = - if n,1>0, Noo= e Nog=MNyoy=-—. The
eigenfunctions v, ,, and eigenvalues vy, arising in the analysis of time reversal are those

17
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~.637
-.318
.000
I 318
-.637

) Phantom ) Reconstruction, 100 sec. (c) Difference image

_.229

-229

(d) Central horizontal cross-sections of images in (a)—(c)

Figure 2. Reconstruction of a phantom %cos X] cos 2x, in a square, showing

incomplete convergence. The difference between the phantom and the reconstruction
(shown on a different gray scale in part(c)) is very close to 96—43 sin 2x; sin x5; (d) shows
T

central horizontal cross sections of the images, with the gray line corresponding to (a),
solid line showing (b), and dashed line representing (c).

of the Dirichlet Laplacian on £2:
2 . . 2 2 2
Wi @) = = sinkxy sinmx,,  y.,, =k*+m°, k,m=0,1,2,3,
, 7 .

We notice that in the cases (k, m) = (n, ) or (m, k) = (n, [) the eigenvalues coincide;
corresponding eigenfunctions are orthogonal in the former case but not always in the latter
case:

Ao = Ami = Ye,m = Vi
(Vi @in), =0, kom=0,1,2,3,
(l//m,k, Py, m)L2 if k — m is even,
(Vo 4 m)Lz if k — m is odd.

In addition, there are some other pairs of coinciding eigenvalues with non-orthogonal
eigenfunctions (e.g. 41 = 474 = 13 = ¥74)- This implies that the result of the gradual time
reversal will not converge to f (x). The residual error will be given by an expression with
infinite number of terms similar to (43) (with modifications needed to account for the double
indexing of eigenfunctions).

For a simple example, consider initial conditions f(x) = ¢, (x) = %cos X1 COS 2x5.
Then all coefficients u,,; (except u;, = 1) are equal to 0. This implies that gradual time
reversal will converge to f(x) + Err(x) with

18
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Err(x) = —(1//2‘1, ¢1,2)L2’/’2,1(x) = %yfm(x) = % sin 2x sin x;. (55)
figure 2 presents the results of numerical simulation we ran to further illustrate this situation.
The model time in this example was about 314 s which corresponds to a hundred bounces of a
wave between the opposite sides of a square. The phantom f (x) is shown in part (a) of the
figure, and part (b) shows the reconstruction. Figure 2(c) presents the error in the
reconstruction (shown on a different gray scale); it turns out to be very close to the theoretical
prediction Err(x) given by equation (55).

Rectangle with incommensurable sides. Let us now consider a rectangular domain
(0, A) x (0, B). Let us assume that A and B are incommensurable numbers, for example A is
rational and B is irrational. Now

znx znx,
@, (x) = Ny cos e cos B
gn%,:”;’;z +%, nl=0,1,2,3,..,
2r . mkx; . ;wmxp
Wi () = A5 sin I sin B
yk%m=%+”;";2, k,m=0,1,2,3, ...,

where N,y = [(@,,;» ®,,)1, are the normalization constants. The only situations when values
of A, and y, coincide is when (k, m) = (n, [). However, it is easy to check by direct
computation that in this case (v, ;, ¢,;), = 0 and the error terms in the form (43) vanish.
Therefore, according to the analysis of section 3.2, the result of the gradual time reversal will
converge weakly (in H'(Q)) to fix) as T = co.

4.2.2. Time reversal with partial data. We return to the case of the square domain
Q = (0, ) X (0, =), but this time assume that the measurements are made on only one side
of the square, corresponding to x; = z (this side plays the role of X;). In this case the
eigenfunctions ¢, ;(x) needed to solve the forward problem are still given by equation (54) .
To analyze gradual time reversal one needs the eigenfunctions w, , (x) of the Laplacian
satisfying Dirichlet boundary condition on the right side of the square and Neumann
conditions on the three other sides:

Wi (X) = 2 cos( (k + l)xl) COS mxy,
’ T 2

12
7/kz,m:(k'f'a) +m2, kkm=0,1,2,3, ....

It follows immediately that, since l,ﬁ, =n? +[%isan integer number and ykzm is not, 4, ; and
Yi.m Dever coincide, and therefore the result of gradual time reversal converges weakly in

H'(£) to the sought initial condition f(x) as T — oco. It may seem counter-intuitive that time
reversal with partial data yields weak convergence while time reversal with full data does not
converge. However, this just means that the latter application of this technique is flawed and
does not extract full information from the data.

A further look at the eigenfunctions y, , (x) and ¢, ; (x) reveals that they are orthogonal if
m # 1, and, therefore, series representing the error in gradual time reversal will partially
decouple similarly to those arising in the analysis of the circular domain. In general, the rate
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-1.00
-0.75
0.50
|025
0.00

) Phantom ) Reconstruction, 490 sec. ) Difference image

AA/\

NI =

-0.28

- 0.14

. 0.00

-0.14

-0.28

(d) Central horizontal cross-sections of images in (a)—(c)

Figure 3. Reconstruction in a square: (a) phantom, (b) reconstruction from the data
measured on the right side with 7'= 490 s, (c) error shown on a shifted gray scale, (d)
profiles of the central horizontal cross sections of the images (a)—(c) with the gray line
corresponding to (a), solid line showing (b), and dashed line representing (c).

of convergence of individual modes depends on the differences of eigenvalues (see, for
example equations (41) and (42)). If some of these differences are small, then the
corresponding constant C4 (M, k) is large and the convergence will be slow. In the case of the
square domain, due to partial orthogonality of eigenmodes, we only need to consider the
following differences

2
ﬂn,m—yk’m|= Vn? + m* — (k+%) + m?

For large values of m and for x of order of 1 the following Taylor expansion holds
Vm? 4+ x = my1 + x/m? zm+2i.
m

Therefore, if n and k are of order of 1 and m is large

- Ly
)“n,m - Yk,m‘ ~ %;

if we let m grow to oo with fixed n and k, the quantity [4,,, — ¥,,| converges to 0, which
means that convergence of the corresponding modes is getting slower. This implies that even
for large values of 7, the error will contain components with large m and small k manifesting
themsselves as waves propagating in the near-vertical direction.

The following numerical example illustrates this situation. Figure 3(a) presents the
phantom (the same as in the disk simulation), figure 3(b) shows the reconstruction
corresponding to 7 = 490 s (or to approximately 156 bounces of a wave between the opposite
sides of the square). Figure 3(c) demonstrates the reconstruction error on a shifted gray scale.
One can see that in spite of a large value of T in the simulation the error remains noticeable; it
consists mostly of the waves with vertical wavefronts as predicted by the above analysis.
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This suggests that, if the data is measured on two perpendicular sides of the square, one
could use the following reconstruction algorithm: run gradual time reversal separately for
each side, filter the two so-obtained images to remove the waves propagating parallel to the
acquisition sides, and then add resulting images together. This, indeed, can be done; however,
since a fast and rigorously proven method [24] is available for such an acquisition scheme, we
will not elaborate further on this topic.
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Appendix

In the case of a unit disk domain the eigenvalues v,, ; and 4,, ; of the Dirichlet and Neumann
Laplacians coincide, correspondingly, with the positive roots j, ; and j,;’k of the Bessel
functions J,, (x) and its derivative J,, (x) (with the exception that x = 0 is counted as the first
zero of Jy(x) and not counted for J;, (x) with m > 0). In this section we establish the fact that
the distance between these roots is uniformly bounded from below (in the sense of
equation (50)).

It is well known that the roots of J,,(x) and J;, (x) interlace [1, 45]:

g <Jmrat <Jmps1> k=1,2,3, ...
It is also known that for m > 0 all non-zero roots are greater than m; more precisely [45]:
Jmi >j,;q,1 > m, m > 0,

and that asymptotically (for large k and fixed m) these roots become equispaced [1]:

jm’k ~ (k —+ %m - %)7[, (56)
jy;’k ~ (k + %m - %)n (57)

Therefore, as k - o

. .
]m,k - ]m,k -

s

SECIRS

. .
Jmges1 " Imik 7 5

2

We, however, need a uniform lower bound on |j,, ;, — j,;l!ll valid for all values of m, k, and .
Such a bound on the distance between the roots of J,,(x) is known [14]:

‘jm,k _jm,l‘ > mlk =1, m > 1/2. (58)
In addition, we need the following result which we have not found in the literature.
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Lemma3. Foranym > 1 (m does not have to be integer) the distance between the adjacent
roots of J,, and J,, is uniformly bounded:

Jmk = dhy 22, k=2,3,4,.., (59)

Ikt ~Jmie 2 15 k=1,2,3, ... (60)

Proof. Let us consider the open interval Iy = (j,, 1, j,..14+1) between the adjacent zeros of J,.
Let us first assume that J,,, is positive on . Then J,, attains its local maximum max;,,J,, (x) at

the point j; .., € I Recall that J,, satisfies the Bessel equation

x2J)(x) + xJ), (x) + (x2 - mz)Jm x) =0,

which for x > 0 can be re-written in the following form:

)Cz—l’l’l2

(xy () = @ (61)

By integrating the latter equation from j; | to x we obtain

« 2 2
ho=-+ [* (62)
J,

mk+1

Now let us use equation (62) and integrate —J,, (x) from j, , ., to j, ., taking into account
that J,, (j,, 141) = 0, that maxy, J (x) = Ju (i, 1y 1) and that £ > m on Gy ys o)

ks x 2 _ 2
max Jm(x)=/ ! l[/ t—me(t)dt]dx
I 2 x|/ t

Jm,k+l mk+1

Jmisr 1 X
< max J, (x) " —l/
Iy M X J

,
Jm k41 i k+1

tdt]dx.

Dividing both sides of the above inequality by max;, J, (x) yields:

1< /;jm,k+] %l‘/]x tdt]dx _ ‘/‘;jm,k+l %(x —j,:,,kﬂ)()f +J',;Lk+1)d~x

’ ’ ’
mk+1 m,k+1 mk+1

(jm,k+1 - jnlq,k+] )2
> .

< Imk1 . dx
= . (.X - -]m,k+1 ) -

,
Im s

Therefore

. .
]m,k+] _Jm,k+l > \/E
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Similarly, in order to bound j, .,

Jmirr 1 Qe 12— m?
max Jm(x):f k+1 _[/ k1 1 m Jm(l‘)dt:|
I X X t

Ik

— Jm.i» integrate equation (62) from j,  to j, ..

Jmiar 1 a1 12— m
< max J,, (x) e / '
I i x t

2

dt]dx.
By dividing both sides by max;, J,, (x) we obtain:

i bt 12— m? ] i i
1</' k1 l /‘ K+l T m ar ldx < /' k1 % / k1 (t — m)dr |dx
Tk X x t j X x

m,k

jr;:.k+l 1 . 2 ./
<L ;[Jm,k+l - 2m<Jm,k+1 - x)]dx

m,k

. ./
T (., Tmge1 T X~ 2m
< / (]m,k+l - )C) . dx
Jonk Jm.k

. Jm, .
< 2(]m,k+1 - m) r y = (i R N
= : (Jm,k+1 - x) = (Jm,k+1 _Jm,k) —
]m,k . ]m,k
Jmk
./
<( o Nt — 1
S \Umk+1 = Imk —j >
m,k

which implies j;1/1,k +1 — Jmx = L. This proves the Lemma for all intervals I; on which J,,, is
positive. In order to prove it for the intervals where J,, is negative, replace J,, by —J,, and
repeat the proof above. |

Proposition 2. There is constant C > O such that for any integer numbers m 2 0, k > 1,
and 1 > 1 the distance between the roots j,, , of J,, and j, . of J,, is bounded from below:

./

e = dp| 2 Cl2k =204 1. (63)

Proof. First consider any function J,,, for m > 1. If [ < k, due to (59) and (58),
jm,k _ji;l,l 2 ﬁ + ﬂ(k - l)

and (63) holds if one chooses C =1 (this is clearly not the sharpest bound!). In the case when
[ > k, using (60) and (58) we obtain

j,:Ll —Jpx 21+l —k=1),

and (63) again holds if one chooses C = 1. This proves (63) for all roots of functions J,,, with
m 2> 1. Now, let us consider the function Jy(x). Due to the asymptotic behavior of the roots
(see equations (56) and (57)), there are constants Cy and C; such that
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ik = dma|| = Coo  kon=1,2,3, ..,
Jox —dx = Cn k=123,
Jet —dox = Cn k=1,2,3, ..,

with C; < Cp/2. Then the following inequality holds:

|jo,k—jé,z|>C1|2k—2l+1I, k,1=1,2,3, ...

Set C = min (1, C;) and (63) holds for all values of m, [, k of interest. ]
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