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Abstract

We propose and test stable algorithms for the reconstruction of the internal
conductivity of a biological object using acousto-electric measurements.
Namely, the conventional impedance tomography scheme is supplemented by
scanning the object with acoustic waves that slightly perturb the conductivity
and cause the change in the electric potential measured on the boundary of
the object. These perturbations of the potential are then used as the data
for the reconstruction of the conductivity. The present method does not rely
on ‘perfectly focused’ acoustic beams. Instead, more realistic propagating
spherical fronts are utilized, and then the measurements that would correspond
to perfect focusing are synthesized. In other words, we use synthetic focusing.
Numerical experiments with simulated data show that our techniques produce
high-quality images, both in 2D and 3D, and that they remain accurate in the
presence of high-level noise in the data. Local uniqueness and stability for the
problem also hold.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrical impedance tomography (EIT) is a harmless and inexpensive imaging modality, with
important clinical and industrial applications. It aims to reconstruct the internal conductivity
of a body using boundary electric measurements (see, e.g., [4, 6, 8, 9]). It is well known that,
regretfully, it suffers from inherent low resolution and instability. To bypass this difficulty,
various versions of a new hybrid technique, sometimes called acousto-electric tomography
(AET), have been introduced recently [3, 7, 16, 25]. (See also [12] for a different way to
recover the conductivity using combination of ultrasound and EIT.) AET utilizes the electro-
acoustic effect, i.e. occurrence of small changes in tissue conductivity as the result of applied
acoustic pressure [20, 21]. Although the effect is small, it was shown in [25] that it provides
a signal that can be used for imaging the conductivity. It has been understood [3, 7, 16] that
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if one could apply concentrated pressure at a given point inside the body and then measure
the resulting change in impedance measurements, the knowledge of the perturbation point
would have a stabilizing effect on the reconstruction in otherwise highly unstable EIT. It has
been proposed to use a tightly focused ultrasound beam as a source of such point-like acoustic
pressure [3]. However, since perfect focusing of acoustic waves is hard to achieve in practice
(see, e.g., [14]), an alternative synthetic focusing approach was developed in [16]. Namely,
the medium is perturbed by a series of more realistic propagating spherical acoustic fronts
with centers lying outside of the object (other options, e.g. plane waves or monochromatic
spherical waves could also be used [16]). The resulting changes in the values of electric
potential on the boundary of the object are recorded. Then the data that would have been
collected, if perfect focusing were possible, are synthesized mathematically. Such synthesis
happens to be equivalent to the well-established inversion in the so-called thermoacoustic
tomography (see, e.g., the surveys [15, 23, 24]). Of course, for accurate synthesis the acoustic
properties of the medium should be known. In breast imaging, for example, the speed of
sound in the tissue can be well approximated by a constant, and application of AET in this
area looks very promising. In the inhomogeneous medium, synthetic focusing is possible if its
acoustic parameters are reconstructed beforehand (for example, using methods of ultrasound
tomography). The results of the first numerical experiments presented in [16] confirm the
feasibility of synthetic focusing.

In this paper, we describe a stable and efficient local algorithm for the AET problem.
From the formulas we present, one can easily infer the local uniqueness and stability of the
reconstruction. However, after this work was performed, the authors have learned of a paper
[7], some results of which (propositions 2.1 and 2.2) imply uniqueness and Lipschitz stability
in a similar setting (see also [5] for the presentation of such a local result). We thus address
these issues only briefly here.

The presented algorithm involves two steps. First, it synthesizes the data corresponding
to perfectly focused ultrasound perturbations from the data obtained using more realistic
spherical waves. Here the known smallness of the acousto-electric effect [20, 21, 25] is
crucial, since it permits linearization with respect to the acoustic perturbation and thus makes
synthetic focusing possible. Second, the algorithm reconstructs the conductivity from the data
corresponding to perfectly focused perturbations. This second step, from measured data to the
conductivity, is nonlinear. We develop a linearized algorithm, assuming that the conductivity is
close to a known one. The numerical examples that we provide show that this approach works
surprisingly well even when the initial guess is very distinct from the correct conductivity.
One can apply iterations for further improvements.

To the best of the authors’ knowledge, the first step of our method (synthetic focusing) has
not been discussed previously in works on AET, except for a brief description in our papers
[16, 18]. On the other hand, three different approaches to reconstruction using a perfectly
focused beam (the second step of our algorithm) have recently been proposed [3, 7, 16, 18].
Let us thus indicate the differences with these recent works.

In [3], two boundary current profiles were used and the problem of reconstructing
the conductivity was reduced to a numerical solution of a (nonlinear) PDE involving the
0-Laplacian. In [16, 18], by a rather crude approximation, we reduced the reconstruction
problem to solving a transport equation (a single current was used). Unfortunately, in the
case of noisy measurements, the errors tend to propagate along characteristics, producing
unpleasant artifacts in the images, which can be reduced by iterations. There is also a version
of this procedure that involves an elliptic equation and thus works better. In [7], two current
profiles are used in 2D (three profiles in 3D); the problem is reduced to a minimization
problem, which is then solved numerically. In this paper, we also use two currents in 2D
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(two or three in 3D) and, in the second step, we utilize the same data as in [7]. Unlike [7],
in our work the reconstruction problem is solved, under the assumption that the conductivity
is close to some initial guess, by a simple algorithm, which even in the first step produces
good images, improved further by iterations. The algorithm essentially boils down to solving
a Poisson equation. Numerical experiments show high-quality reconstructions, quite accurate
even in the presence of very significant noise. Reconstructions remain accurate when the true
conductivity differs significantly from the initial guess.

The rest of the paper is organized as follows. Section 2 contains the formulation of
the problem. It also addresses the focusing issue. Section 3 describes the reconstruction
algorithm, whose stability is discussed in section 4. Numerical implementation and results
of the reconstruction from simulated data in 2D are described in section 5. Sections 6 and 7
address the 3D case. Section 8 is devoted to final remarks and conclusions.

2. Formulation of the problem

Let o (x) be the conductivity of the medium within a bounded region 2. Then the propagation
of the electrical currents through €2 is governed by the divergence equation

V-o(x)Vu(x) =0, xeQ, (1)
or, equivalently
Au(x) +Vu(x)-Vino(x) =0, )

where u(x) is the electric potential. Let us assume that o — 1 is compactly supported within
the region 2, and that o (x) = 1 in the neighborhood of the boundary d€2. We also assume
that the currents J = o %u(x) through the boundary are fixed and the values of the potential
u are measured on the boundary 9<2.

The acoustic wave propagating through the object slightly perturbs the conductivity
o (x). Following the observations made in [20, 21], we assume that the perturbation is
proportional to the local value of the conductivity; thus, the perturbed conductivity ™% (x)
equals o (x) exp(n(x)), where the perturbation exponent 7(x) is such that |n(x)| <« 1 and
is compactly supported. Let "V (x) = u(x) + w,(x) be the potential corresponding to the
perturbed conductivity o™V (x) and w,(x) be the perturbation thereof. By substituting these
perturbed values into (2), one obtains

Alu(x) +w, ()] + V[u(x) + wy(x)] - V[Ino (x) + n(x)] = 0. 3)

Further, by neglecting the second-order terms (in 1) and by subtracting (2) from (3), we arrive
at the following equation:

Awy(x) + Vw,(x) - Vino (x) = —Vu(x) - Vi(x). 4)
Finally, by multiplying (4) by o (x), we find that w,,(x) satisfies the equation
V.o@x)Vw,(x) = —o(x)Vu(x) - Vin(x) 5)

subject to the homogeneous Neumann boundary conditions. Since the values of u(x) and
u"V(x) are measured on the boundary, the Dirichlet data for w),(x) are known. It will be
sufficient for our purposes to measure a certain functional of the boundary values of w, (x).
Let us fix a function / (z) defined on 92, and define the corresponding measurement functional
M (n) as follows:

My () 3=/ wy(2)1(z) dz. (6)
29
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Here the subscript J on the left is a reminder of the dependence of w on the current J. The
function 7 (z) does not have to be a function in the classical sense; it may also be chosen to
be a distribution, for example, a sum of delta functions. In the latter case, it would model
measurements obtained by a set of point-like electrodes. Since the data corresponding to all
electrodes would then be added together, the noise sensitivity of such a scheme is quite low,
and our numerical experiments (not presented here) confirm that.

Our goal is to reconstruct o(x) from measurements of M; ;(n) corresponding to a
sufficiently rich set of perturbations 7(x) in (5).

The simplest case is when one can achieve perfect focusing, and thus n,(x) ~ C8(x —y),
where the point y scans through 2. Then the reconstruction needs to be performed from the
values

M 55(y) :=/ wy,.1(2)1(z) dz.
Q2

However, this assumption of perfect focusing is unrealistic [14]. More realistic are, for instance,
mono-chromatic planar or spherical waves, or spreading spherical fronts. We assume here that
ideal point-like transducers are excited by an infinitesimally short electrical pulse. If we assume
(without loss of generality) that the speed of sound equals 1, the acoustic pressure W, . (x)
generated by a transducer placed at point z (outside €2) solves the following initial value
problem for the wave equation:

82
AW, (x) = mW,,Z(x), x eR® 1el0,00)
Wo.(x) = 8(|x — z),
9
EWo,z(x) =0.

The solution of this problem is well known [22]:

a (6@ —|x —Z|))

Wi(x) = — ( e ; (7

ot

it has the form of the propagating spherical front with the radius ¢ centered at z. (The time

derivative of the § function in (7) results naturally from the § excitation of the transducer;

the spherical waves we used in [16] can be obtained by anti-differentiation of the signal
corresponding to (7).)

The perturbation 7, . (x) of the conductivity caused by the propagating front W, ,(x) equals

noW; . (x), where ng is some small fixed proportionality constant (reflecting the smallness of

the acousto-electric effect). The corresponding measurements are then (after factoring out ng)

Myt 2) = / ww, s (1(2) dz. ®)
aQ

Due to the linear dependence of the measurements on the acoustic perturbation 1, one can
try to perform a ‘basis change’ type of calculation, which would produce the ‘focused’ data
M;j ;s(y) from the more realistic ‘non-focused” measurements M; (¢, z). In particular, as is
explained in [16, 18], if one knows the data (8) for all # € [0, oo] and z € ¥ (where X is a
closed curve (surface in 3D) surrounding €2), then M, ; 5(¥) can be reconstructed by methods
of thermoacoustic tomography. In particular, if X is a sphere, circle, cylinder, or a surface of a
cube, explicit inversion formulas exist that can recover M ; 5(y) (see [15]). For general closed
surfaces, other efficient methods exist (e.g., time reversal). This transformation is known to be

3 Other ‘bases’ of waves, e.g. radial mono-chromatic, or planar could also be used [16].
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stable. In fact, as will be explained below, in the version of synthetic focusing used here, it is
smoothing.

We thus assume that M; ; 5(y) are known for all y € €2 (e.g. they are obtained by synthetic
focusing or by direct measurements). For our purposes it will be sufficient to use only two
functions /;(z) and I,(z) as both the current patterns and the weights in functionals (6). We
thus measure or synthesize the following values:

M; ;(y) ::/ wy, 1,(2)1(2) dz, i,j=1,2. 9
FI9)

We now interpret these data in a different manner. Namely, let u;(x), j = 1, 2, be the
solutions of (1) corresponding to the boundary currents (i.e. Neumann data) /;. Then

Vo) Vwjs (x) = —o () Vu;(y) - Vé(x —y). (10)

Since
M; ; =/ w;(2)1;(z) dz,
FIo)

equation (10) and the divergence theorem lead to the formula
M; j(x0) = o (x0)Vu;(xo) - Vuj(xp). (11)

Thus, for any interior point x € 2 and any two current profiles /;, j = 1,2, on the
boundary, the values of expressions (11) can be extracted from the measured data.

Our goal now is to try to recover the conductivity from these values. The same problem
in 2D was addressed in [7], but our approach to reconstruction is different.

3. Reconstructing the 2D conductivity from focused data using two currents

We will assume here availability of the measurement data M; ;(x) for all x € €2, no matter
whether they were obtained by applying focused beams, or by synthetic focusing. We will
consider now the situation where the conductivity o (x) is considered to be a (relatively) small
perturbation of a known benchmark conductivity o (x):

o (x) = op(x)(1 +ep(x)), (12)

where ¢ <« 1 and p = 0 near the boundary of the domain. (Numerical experiments show
that our method yields quite accurate reconstructions even when the true conductivity differs
significantly from the initial guess oy.)

It will also be assumed that two distinct current patterns I, j = 1, 2, on the boundary are
fixed, and the two resulting potentials u ;, j = 1, 2, with the benchmark conductivity oy,

V-0p(x)Vu;(x) =0,

correspond to the two prescribed sets of boundary currents. These potentials can be computed
and are assumed to be known.

Correspondingly, the unknown true potentials w;(x) = u;(x) + gv;(x) + o(e) for the
actual conductivity o satisfy the equations

V.oV(u;+ev;)=0

with the same boundary currents as u;.
According to the discussion in the previous section, using acoustic delta-perturbations
(real or synthesized), we can obtain for any point x in the domain €2 the values

M3, (x) := 00 (x) Vu (x) - Vg (x), (13)
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which can be computed numerically using the background conductivity oy, and
M (x) :=0@x)Vw;(x) - Vup(x) = M?’k +egjx+o(e), (14)
which are obtained by boundary measurements. Now we can forget the acoustic modulation
and concentrate on reconstructing o (x) (and thus o (x)) from the known M ; (x), or, neglecting
higher order terms, from g; i (x).
Let us rewrite (14) in the following form:

o (X)V[u;(x)+evi(x)] - VIug(x) +eve(x)] = M_(/‘),k +egjk+o(e). (15)
By subtracting (13) from (15), one obtains the formulas
gik(x) =0(Vu; -V, +Vuy - Vv;) +o(e). (16)

We will drop the o(e) terms in the following calculations. We introduce the new vector fields
U; = J/ooVu;and W; = JoV(u; +¢ev;) = U; +¢€V;, so that

V. JooU;j =0
and

V.- JoW; =0.
We would like to find W;. The last equation can be rewritten, taking into account that, up to
o(g) terms, /o ~ \/O'_()(l + %sp) and Ino = Inoy + €p, as follows:

V.- Joo(l+ep/2)(U;+eV;)) =0
or
V- (U;+eV)+3(U;+¢eV;)-V(no +ep) = 0.
By collecting the terms of the zero and first order in &, we obtain
V-U;+3U;-Vino =0

and

V-V;+3U;-Vp+3V;-Vino =0
or

V~Vj+%vj-Vll‘lO'=—%Uj'viO-
Equivalently,

With this new notation, the measurements can be expressed (neglecting higher order terms) as
follows:

(Uj+eV)) - (U +eVi) = M = M}, +egu.
which leads to
Uj - Ux = M.,
Uj - Vi+ Uy - Vj = &jk-
In particular, we arrive at three independent equations for V;:
Ui-Vi=g11/2
Uy - Vo= g2,/2 (17)

U-Va+ Uz Vi =gi2.
These equations will be our starting point for deriving reconstruction algorithms, as well
as uniqueness and stability results.
We consider now the case when the benchmark conductivity (initial conductivity guess)
is constant: op(x) = 1.

6
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3.1. The constant benchmark conductivity og(x) = 1

We will choose the boundary currents %u j(x) to be equal to n(x) - e;, where n(x) is the unit
external normal to the boundary and ¢; = (1, 0), e; = (0, 1) are the canonical basis vectors.
Then for the conductivity g = 1, the resulting potentials u ; (x) are equal to x;, and the fields
Uj are equal to e;:

UjZVMjZEj, ]:],2
We thus obtain the formulas
8v1
2—+p=2g
8x1
v
2_2 +po= g2 (18)
3)62
31)1 sz
BXQ 8x1 = 812
as well as the equations
d
Av; =——0p, j=1,2. (19)
’ 8)Cj

Differentiating equations (18), we obtain

Zﬂ + iﬁ = igl 1
8x12 ax; ox;
Pu, R
0x10x2  0xp 0xy" "
P, 8
x3  0xy 3, 002
(20)
O7vs + iﬁ = igzz
ax10xy  0x] ox;~~
3%v, 9%v, d
m 8_x12 = a—x]gl,z
9%v, 9%v, d
a_xg 9x10x, - a_ng‘*z'
Combining the second, third, and fifth equations in (20), we arrive at
0= aingl,l — Zaixlgl,z - 8ing2’2 +2Av;.
Utilizing (19) with j = 2 and differentiating with respect to x,, we obtain
a2 1 92 92
8_x§'0 = Ea_xg(gl,l —82) — 8x13ngl’2'
Similarly,
a2 1 92 a2
8—)612,0 = Ea—xlz(gz,z — 811 — Bxlangl’z'
Adding the last two equalities, we obtain the Poisson-type equation
2 2 2
Ap = % (aa_x,z - 8a_x22> (822 —811) — 28x(?8x2g1’2 (21
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for the unknown function p. Note that all expressions on the right-hand side are obtained from
the measured data and that by our assumption p satisfies the zero Dirichlet condition at the
boundary.

This reduction clearly allows for the algorithmic reconstruction, as well as proving (under
appropriate smoothness assumptions on o) the local uniqueness and Lipschitz stability of
reconstruction (see section 4).

3.2. A parametrix solution for smooth benchmark conductivity oy(x)

We would like to now present a sometimes useful observation for the situation when the
benchmark conductivity oy is smooth, but not necessarily constant (e.g., a standard EIT
reconstruction would provide such an approximation). In this case, we will find a parametrix
solution, i.e. determine o (x) up to smoother terms.

As has already been discussed, the perturbation v; of the potential u; satisfies the equation

V.o0oVv; = —ooVu; - Vp.
Since o is smooth and non-vanishing, up to smoother terms, we can write
Av; ~ —Vu;-Vp
and
vj & —(Vuj - V)(A™'p)
where A~ is the inverse to the Dirichlet Laplacian in 2. Again up to smoother terms, we have
Uy - Vi = Vo Vug - Vo (p/2Vu; + Vv;)
=0p/2Vuy - Vuj+0(Vu - V)(Vu; - V)A  p.

The latter expression is symmetric up to smoothing terms and equations (17) can be rewritten
as

Ui -Vi=g1.1/2
Uy - Vo= g22/2
U, -V, = g12/2+ asmoother term
U, - V| = g12/2+ asmoother term.

Under such an approximation, assuming that the currents Vi and Vu, are not parallel, which
is known to be possible to achieve [2], one can recover ¢ V; at each point x. Therefore, (more)
accurate solutions W; = U, + ¢V, can be found. We note that V - /o W; = 0 and so

WJ' -Vino = -2V - Wj.
On the other hand, since W; = /o V(u; + €v;), we have

W;
Vx—=0.

Jo

This can be rewritten as
Wi x Vino = -2V x W;
or
Wi Vino = -2V x W,
where W,L is the vector obtained from W; by the counter-clockwise 90° rotation (i.e.
Wit W; = 0and |Wji| = |W;)).

8
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Since for each j = 1, 2 vectors W; and le form an orthogonal basis, one has

Vino =

2 €L
—|Wj|2(W,- (VX W)+ W;i(V-W)),

and thus

)
Alno = —dw'Wj'z(Wf(v x W)+ W;(V-W)).

We compute now In o by taking the average of the two values of j and then solving the Poisson
equation

2
2
Alno = —div) W |2(le(v x W)+ Wi(V - W)).
j=1

It is interesting to note that this solution reduces to (21) when o = 1, although (21) holds
exactly, not just up to smoother terms.

4. Uniqueness and stability

In this section, we assume that o € C"%(), and thus p belongs to this space as well (recall
that p also vanishes in a fixed neighborhood of 9€2).

The questions of uniqueness and stability in the situation close to ours have already been
addressed in [5, 7], so we will be brief here. Although considerations of [5, 7] were provided
in 2D, the conclusion in our situation works out the same way in 3D if three currents are used.

The standard elliptic regularity [13] implies the following.

Proposition 1 [5, 7].

(1) The data g; ; in (14) determine the conductivity o = 1 + p uniquely.
(2) The mappings p(x) — {g; j(x)} of the space Cé’“(V), where V is a compact sub-domain
of Q, are Fréchet differentiable.

This justifies our formal linearization near the benchmark conductivity op. Now, the
calculations of section 3.1 provide explicit formulas for the Fréchet derivative of the
proposition®. In particular,

d _ 1 0 ( ) d

ax P = 2% 82,2 — 81,1 %2 81,2, )
d 1 0 d

—p==—(811—8&,2) — —&i.2-

0x7 2 0x; dx;

These formulas and vanishing of p near dQ show that the norm of p in C'** can be estimated
from the above by such norms of the functions {gi1, g12, g22}. In other words, the Fréchet
derivative of the mapping

p = {g11, &12, &2} (23)

is a semi-Fredholm operator with zero kernel. Then the standard implicit function-type
argument shows (see, e.g., [19, corollary 5.6, chapter I]) that (23) is an immersion. This proves
local uniqueness and stability for the nonlinear problem (the analogous result is obtained in
2D in [5]).

4 In fact, these formulas easily imply the statement of the proposition in our particular case.
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Moreover, since our algorithms start with inverting the Fréchet derivative, this reduces near
the constant conductivity the nonlinear problem to the one with an identity plus a contraction
operator. This explains why the fixed point iterations in the following sections converge so
nicely.

The 3D case with three currents works the same way. Similar to how it is done in
section 3.1, for a constant conductivity benchmark oy, one can always find boundary currents
that produce fields U; = e;, j = 1,2, 3. Then, as explained in section 6, one obtains an
elliptic system of equations (see equation (26)) for reconstructing p(x).

5. Numerical examples in 2D

We will now illustrate the properties of our algorithm on several numerical examples in 2D.
Each simulation involves several steps. First we model the direct problem as follows. For a
given phantom of ¢ and a fixed boundary current J, we solve equation (1) in the unit square
[—1, 1T x [—1, 1], and (for a chosen weight function /) we compute the unperturbed boundary

. rurbed
functionals M}"7™"™:

My = /8 u@I1@)dz. (24)

Next, for a set of values of ¢ and z, we perturb o by multiplying it by exp(n; ;(x)) with 1, ;(x)
proportional to the propagating acoustic pulse W, . given by equation (7). (In simulation we
used a mollified version of the delta function, which corresponds to a transducer with a finite
bandwidth.) For each perturbed o we again solve equation (1), obtain the solution yPerturbed,
and compute functionals,

M}qu]rturbed(t’ Z) = / uperturbed(z)l(z) dz. (25)
aQ
Finally, the difference of M}’f’;mbed(t, z) and M;'_“}’m"rbed yields the values of the functionals
M ;(t, z) given by equation (8) which we consider the simulated measurements and the
starting point for solving the inverse problems. In some of our numerical experiments, we add
values of a random variable to these functions to simulate the noise in the measurements.

The advantage of computing M; (¢, z) as the difference of two solutions (as opposed to
obtaining it from the linearized equation (8)) consists in eliminating the chance of committing
‘an inverse crime’. However, since the subtraction of two numerically computed functions
that differ very little can significantly amplify the relative error, our forward solver has to be
very accurate. In order to achieve high accuracy, we approximated the potentials in the square
by Fourier series and used the fast Fourier transforms (FFT) to compute the corresponding
differential operators. In turn, the application of the FFTs allowed us to use fine discretization
grids (513 x 513), which, in combination with smoothing of the simulated o (x), yields
the desired high accuracy. (Such algorithms combining the use of global bases (such as the
trigonometric basis utilized here) with enforcing the equation in the nodes of the computational
grid are called pseudospectral [11]; they are very efficient when the computational domain is
simple (e.g. a square) and the coefficients of the equation are smooth.)

After the measurement data have been simulated, the inverse problem of AET is solved
by reconstructing functions M; ; (see equation (9)) from M; ;(z, z) (synthesis step), and by
applying the methods of section 3 to reconstruct ep(x) (i.e. the difference between the true
conductivity and the benchmark oy).

Our phantom (i.e. simulated In o (x)) consists of several slightly smoothed characteristic
functions of circles, shown in figures 1(a) and 5(a). (A more detailed description is presented

10
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(a) (b) (c)

Figure 1. Reconstruction in 2D from noiseless data: (a) phantom, (b) iteration 0, (c) iteration 1.

in the appendix.) Smoothing guarantees that the phantom is fully resolved on the fine
discretization grid we use during the forward computations, which helps to ensure its high
accuracy (several correct decimal digits). The characteristic functions comprising the phantom
are weighted with weights 1 or -1, so that o (x) varies between e and e~ !. Thus, the conductivity
deviates far from the initial guess oy = 1. The current /; equals 1 and —1 on the right and left
sides of the square, respectively; it vanishes on the horizontal sides. The current 7, coincides
with I; rotated 90° counterclockwise.

The simulated sources of the propagating spherical acoustic fronts are centered on a
circle of the diameter slightly larger than the diagonal of the square domain. There were 256
simulated transducers uniformly distributed over the circle. Each transducer produced 257
spherical fronts of the radii ranging from O to the diameter of the circle. For each front radius
t; and center z,,, the perturbed o was modeled, the nonlinear direct M| I (t,zm), J,k=1,2,
were computed as explained at the beginning of this section. In the first of our experiments,
these accurate data were used as a starting point of the reconstruction. In the second experiment,
they were perturbed by a 50% (in the L? norm) noise.

The first step of the reconstruction is synthetic focusing, i.e. finding the values M ; (x)
from M 1,.1,(t,2), j, k = 1,2. In order to give the reader a better feeling of synthetic focusing,
we present in figure 2 a picture of a propagating spherical acoustic front (part (a)), and an
approximation to a delta function located at the point (0.2, 0.4) obtained as a linear combination
of such fronts (part (b)). Figure 2(c) shows the same function as in part (b) with a modified
gray scale that corresponds to the lower 10% of that function’s range, and thus allows one to
see small details invisible in part (b). These figures are provided for demonstration purposes
only, since in our algorithm reconstruction of the values M; x(x) from M;, ;, (¢, z) is performed
by applying the 2D exact filtration backprojection formula to the latter function (we used the
exact reconstruction formula from [17], but other options are also available). On a 129 x
129 grid, this computation takes a few seconds. Since the formula is applied to the data
containing the derivative of the delta function, the differentiation appearing in the TAT inversion
formula (e.g., [1, 10, 15, 17]) is not needed, and the reconstruction instead of being slightly
unstable, has a smoothing effect (this is why we obtain high-quality images with such a high
level of noise).

In the second step of the reconstruction, the functions M?’ «(x) are computed using the
knowledge of the benchmark conductivity oy, and the values of g;(x) are obtained by
comparing M ;(x) and M;)’ « (). Then the first approximation to o (we will call it iteration 0)
is obtained by solving equation (21). The right-hand side of this equation is computed by finite

11
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(b) (c)

Figure 2. (a) Propagating acoustic front, (b) the result of focusing at the point (0.2, 0.4), (c) the
same as (b) with the gray scale showing the lower 10% of the range of the function.

Figure 3. Horizontal central cross section (accurate data): the dashed line denotes the phantom,
the gray line represents iteration 0, and the thick black solid line represents iteration 1.

differences, and then the Poisson equation in a square is solved by the decomposition in 2D
Fourier series. The computation is extremely fast due to the use of the FFT. More importantly,
since the differentiation of the data is followed by the application of the inverse Laplacian,
this step is completely stable (the corresponding pseudodifferential operator is of order zero),
and no noise amplification occurs.

Finally, we attempt to improve the reconstruction by accepting the reconstructed o as
a new benchmark conductivity and by applying to the data the parametrix algorithm of the
previous section. We call this computation iteration 1.

Figure 1 demonstrates the result of such a reconstruction from data without noise. Part (a)
of the figure shows the phantom, and parts (b) and (c) present the results of iterations 0 and
1, on the same gray-level scale. The profiles of the central horizontal cross sections of these
functions are shown in figure 3. One can see that even the iteration 0 produces quite a good
reconstruction; iteration 1 removes some of the artifacts, and improves the shape of circular
inclusions. For the convenience of the reader, we summarize the parameters of this simulation
in the appendix.

Figures 4, 5 and 6 present the results of the reconstruction from noisy data. In this
simulation, we used the phantom from the previous example, and we added to the data 50%
(in the L? norm) noise. The first step of the reconstruction (synthetic focusing) is illustrated
in figure 4. Parts (a) and (c) of this figure show accurate values of the functionals M, |(x)
and M| »(x). Parts (b) and (d) present the reconstructed values of these functionals obtained
by synthetic focusing. One can see the effect of smoothing mentioned earlier in this section:
the level of noise in the reconstructions is much lower than the level of noise in the simulated
measurements. The images reconstructed from M; ;(x) in the second step are presented in

12
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Figure 4. Functionals M; ;: (a) original My 1, (b) M} | reconstructed from data contaminated by
50% noise; (c) original M 2, (d) M| reconstructed from data contaminated by 50% noise.

(a) (b) ()

Figure 5. Reconstruction from the data contaminated by a 50% noise: (a) phantom, (b) iteration 0,
(c) iteration 1.

figures 5 and 6. The meaning of the images is the same as those in figures 1 and 3. The level
of noise in these images is comparable to that in the reconstructed M; ;’s. To summarize, our
method can reconstruct high-quality images from the data contaminated by a strong noise
since the first step of the method is an application of a smoothing operator, and the second
step uses the parametrix.

13
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Figure 6. Horizontal central cross section (noisy data): the dashed line denotes the phantom, the
gray line represents iteration 0, and the thick black solid line represents iteration 1.

» »
e

(b) (c)

Figure 7. Reconstruction from noiseless data: (a) phantom, (b) iteration 0, (c) iteration 4.

Finally, figure 7 shows the reconstruction of a phantom containing objects with corners.
The phantom is shown in part (a) of the figure, part (b) demonstrates iteration 0, and part
(c) presents the result of the iterative use of the parametrix method described in the previous
section (iteration 4 is shown).

6. Reconstruction in 3D

Let us now consider the reconstruction problem in 3D. The 3D case is very important from the
practical point of view, since propagation of electrical currents is essentially three dimensional.
Indeed, unlike x-rays or high-frequency ultrasound, currents cannot be focused to stay in a two-
dimensional slice of the body. However, while successful 3D reconstructions were reported [7],
the theoretical foundations of the 3D case have not been completed yet, due to some analytic
difficulties arising in other approaches. In contrast, the present approach easily generalizes to
3D, and leads to a fast, efficient, and robust reconstruction algorithm.

We will assume that three different currents /;, j = 1, 2, 3, are used, and that the boundary
values of the corresponding potentials w;, j = 1,2, 3, are measured on 9€2. Similar to the
2D case presented in section 2, by perturbing the medium with a perfectly focused acoustic
beam (no matter whether such measurements are real or synthesized), one can recover at each
point x within €2 the values of the functionals M; ;(x), i, j = 1, 2, 3, where, as before,

M; ;(x) = o (x)Vw;(x) - Vw;(x).

Our goal is to reconstruct the conductivity o (x) from M; ;(x). As before, we will
assume that o (x) is a perturbation of a known benchmark conductivity oy(x), i.e. o(x) =
oo(x)(1 + ep(x)), and that the values of potentials w;(x) are the perturbations of known
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potentials u ; (x) corresponding to oo (x) :
w;(x) =u;(x)+evi(x)+o(e).

Now the functionals M  (x) are related to the known unperturbed values MJQ, (x) and measured
perturbations g; x(x) by equations (14) and (13).

As was performed in section 3, we introduce vector fields U; = ,/ooVu; and
W; = oV(u;+ev;) = U, +¢V;, and proceed to derive the following six equations:

Ui -Vi=g.1/2
Uy - Vo= g22/2
Us- V3 =g33/2
U -V2+Uz- Vi =g
U -V3+Us-Vi=g13
Uy - V3+Us- V2 = g23.

One can obtain a useful approximation to p(x) by assuming oy = 1, and by selecting
unperturbed currents so that the potentials u;(x) = x;. Then, by repeating derivations of
section 3.1, one obtains the following three formulas:

82+32 1 32 82( )232
8x12 Bxg p—2 Bxlz Bx% £22 811 8x|8x2g1'2

a2 a2 1/ 9% a2 a2
< >P=—< ——2) (833 —81.1) —2 81,3 (26)

—_— + —_— —_—
Bxlz 8x32 2 3x12 0x3 0x10x3
2

02 02 1 [/ 0? 02 5 0
<ax§ ¥ 8x32) =3 (axg axg) (835~ £22) = 25 3 &
We note that by using the first of the above equations, one can compute an approximation to
p(x) by solving a set of 2D Poisson equations (one for each fixed value of x3), since boundary
values of p(x) are equal to 0. This leads to a slice-by-slice 3D reconstruction, which is based
only on the values of g, 1, g22 and g », and therefore can be performed by using a single pair
of currents.

One can obtain better images by using all three currents and doing a fully 3D
reconstruction. Namely, summing equations (26) yields the values of 2Ap on the left-hand
side. Then one can solve the 3D Poisson equation with the zero boundary conditions to recover
the conductivity.

One can expect that, as in 2D, this approach would work well for o (x) close to gy = 1.
However, as demonstrated by our numerical experiments presented in section 7, the results
remain quite accurate when o (x) varies significantly across 2. Moreover, a simple fixed point
iteration based on the repeated use of formulas (26) exhibits a rapid convergence to the correct
image.

7. Numerical examples in 3D

In this section we present the results of 3D reconstructions from simulated data. Unfortunately,
a complete modeling of the forward problem in 3D (i.e. computation of the perturbations
corresponding to the propagating acoustic spherical fronts) would require the solution of
O(n?) 3D divergence equations. This task is computationally too expensive. Therefore, unlike
in our 2D simulations, we resort to modeling the values of the functionals M; ;(x) on a
257 x 257 x 257 Cartesian grid, using formulas (26). These values correspond to the data
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Figure 8. 3D reconstruction from noiseless data. First row: phantom (a) Ox;x; cross section, (b)
Ox1x3 cross section, (¢) Oxpx3 cross section. Second row: iteration 0. Third row: iteration 4.

that would be measured if perfectly focused, infinitely small perturbations were applied to the
conductivity. Thus, in this section we only test the second step of our reconstruction techniques.
However, as mentioned before, if the real data were available, the first step (synthetic focusing)
could be performed by applying any of the several available stable versions of thermoacoustic
inversion, and the feasibility of this step was clearly demonstrated in the 2D sections of this
paper, as well as in [16].

In our first simulation, we used the noiseless values of M; ;(x) and reconstructed the
conductivity on a 257 x 257 x 257 grid. The first row of figure 8 shows three 2D cross sections
of a 3D phantom. The result of approximate inversion (using three currents, as described in
section 6) is presented in the second row of the figure. Finally, the last row shows the result of
the iterative use of formulas (26), where p now represents the difference between the previous
and the updated approximations to the conductivity. The third row demonstrates iteration 4.
In addition, figure 9 shows the trace along a diagonal cross section in the Ox;x, plane (that
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Figure 9. Diagonal cross section (noiseless data): the dashed line denotes the phantom, the gray
line represents iteration 0, and the thick black solid line represents iteration 4.

corresponds to the diagonals of images presented in column (a) of figure 8). We summarize
details of this simulation in the appendix.

In our second 3D experiment, we utilized the same phantom, but as the data used only
a subset of the values of M; ; corresponding to a coarser 129 x 129 x 129 grid, the latter
coarse grid was also used to discretize the reconstructed conductivity. We also added to the
data 10% (in the L? norm) noise. Figure 10 presents the cross sections of a 3D phantom and
the reconstructions obtained using three currents, on the same gray-level scale. The meaning
of the subfigures is the same as those in figure 8. Finally, figure 11 shows the trace along the
diagonal cross sections of the images in the Oxx,y plane.

In both these examples, the iteration 0 yields the good qualitative reconstruction of the
conductivity in spite of the fact that the latter varies from e~! to ¢!, and thus differs strongly
from the benchmark guess oy = 1. The subsequent iterations demonstrate fast convergence to
the correct values of o (x).

8. Final remarks and conclusions

We have shown that the proposed algorithm works stably and yields the quality reconstructions
of the internal conductivity. It does not require physical focusing of ultrasound waves and
replaces it with the synthetic focusing procedure, which can be implemented using one of the
known thermoacoustic imaging inversion methods (e.g., time reversal or inversion formulas).
Under appropriate smoothness conditions on the conductivity, our analysis leads to the proof
of local uniqueness and stability of the reconstruction. However, since this conclusion has
already been made in 2D in [5, 7], we only presented a sketch of the proof.
Some additional remarks are as follows.

(1) Using the propagating spherical fronts of the type considered in this text (equation (7))
is advantageous since in this case synthetic focusing is a smoothing operator, and thus
the whole reconstruction procedure is more stable with respect to errors than the one that
starts with focused data.

(2) Reconstructions can be performed with single, two, or (in 3D) three currents. A single
current procedure was the one we used initially in 2D [16, 18]. It works, but requires
solving a transport equation for the conductivity. When such a procedure is used, errors
arising due to the noise and/or under-resolved interfaces tend to propagate along the
current lines, thus reducing the quality of the reconstructed image. The two-current
approach in 2D is elliptic and thus does not propagate errors. The two-current slice-by-
slice reconstruction in 3D is also possible, but the use of three currents seems to produce
better results.
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i
i3

Figure 10. 3D reconstruction from noisy data on a coarser grid. First row: phantom (a) Oxjx2
cross section, (b) Ox;x3 cross section, (¢c) Ox,x3 cross section. Second row: iteration 0; third row:
iteration 4.

Figure 11. Diagonal cross section of reconstructions obtained from noisy data on a coarser gird:
the dashed line denotes the phantom, the gray line represents iteration 0, and the thick black solid
line represents iteration 4.
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Appendix

In order to make it easier for the reader to repeat our simulations, we summarize in this section
details of some of our numerical experiments.

In the first two of the 2D simulations described in section 5, we use a 2D phantom in the
form of a linear combination of 12 smoothed characteristic functions of disks with radii r]i.n
and centers x;:

12
) =Y ejh(lx —x; 1 ), Xy = (x0.x0).
Jj=l1
where
L, r < r}n
0, r>= r;.’”t

h(r, 1}, r;"“) =

pout _ ri.n pout _ ri{n )
exp |:2 ;{—r‘?uj‘ exp( jri" —rj )] .o <r <
J j
and the values of «;, x; 1, Xx;2, r_il.“, and r;."“ are given in table 1. All the smoothed disks
lie within the square computational domain [—1, 1] x [—1, 1]. The forward problem was
computed on a fine 513 x 513 grid. We simulated propagating spherical fronts generated
by 256 transducers equally spaced on the circle of radius 1.6 centered at the origin. For
each transducer we simulated 257 spherical fronts of varying radii. The reconstruction was
performed on the coarser 129 x 129 computational grid, from the data corresponding to two
currents. In the first experiment, we used the noiseless data; in the second one, we added to the
simulated values the M; ;(t, z) values of a random variable modeling the noise of intensity
50% of the signal in the L% norm. The results of these simulations are described in section 5.
In section 7, we utilized a 3D phantom represented by a linear combination of 16 smoothed

characteristic functions of balls with radii r}n and centers x;:
16
in _out
fx) = E a;h(|x —xjl,rir; ), Xj = (Xj1,Xj2,Xj3),
j=1
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Table 1. Parameters of the 2D phantom.

out

in

J Xj1 Xjz o T Ty %

1 —0.54 0.54 026 0.24 1

2 0.00 0.60 024 022 -1

3 0.60 0.60 0.16 0.14 1

4 —0.60 0.00 0.16 0.14 -1

5 0.60 0.00 026 024 -1

6 —-054 —-054 026 024 1

7 0.00 -0.60 024 022 -1

8 0.60 -0.60 0.16 0.14 1

9 0.18 0.18 0.16 0.14 -1
10 0.18 -0.18 0.16 0.14 1
11  —-0.18 0.18 0.16 0.14 1
12 -0.18 -0.18 0.16 0.14 -1
Table 2. Parameters of the 3D phantom.
J Xj1 Xjn xjz oo o
1 —-0.615 —-0.54 0 0.26 0.22 0.5
2 -0.6 0 0 0.24  0.20 1
3 0.6 0.6 0 0.16 0.12 0.5
4 0 -0.6 0 0.16 0.12 1
5 0 0.6 0 0.26 0.22 1
6 —0.54 —0.54 0 0.26 0.22 0.5
7 -0.6 0 0 0.24 0.20 1
8 -0.6 0.6 0 0.16 0.12 0.5
9 0.18 0.18 0 0.16 0.12 1
10 —0.18 0.18 0 0.16 0.12 0.5
11 0.18 —0.18 0 0.16 0.12 0.5
12 —-0.18 —0.18 0 0.16 0.12 1
13 0 0 0.6 0.18 0.14 -1
14 0 0 0.6 0.30 0.26 1
15 0 0 —-046 0.38 0.34 0.5
16 0 0 —-046 0.16 0.12 0.5

the values of «j, x; 1, Xj2, Xj3,

20

in
rj,

and r;?”‘ are given in table 2. In our 3D simulations,
we had to assume that the values M; ;(x) are known. We modeled these values by using the
above-mentioned phantom, in combination with three boundary current profiles. In the case
of the constant conductivity, these boundary currents would produce potentials equal to x;,
j = 1,2,3. We modeled the direct problem using the 257 x 257 x 257 computational grid
corresponding to the cube [—1, 1] x [—1, 1] x [—1, 1]. In the first of our 3D experiments,
the reconstruction was performed on the same grid from the noiseless data. In the second
experiment, the reconstruction was performed on a coarser 129 x 129 x 129 grid from the
data contaminated by a 10% noise (in the L? norm). The results of these reconstructions are
described in section 7.
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