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Abstract
We develop an exact formula approach to nonuniform attenuation correction
in single-photon emission computed tomography (SPECT). We discuss several
reconstruction examples obtained by this method from real SPECT data.

1. Introduction

We consider the two-dimensional attenuated x-ray transformation Pa defined by the formula

Pa f (s, θ) =
∫

R

exp(−Da(sθ⊥ + tθ, θ)) f (sθ⊥ + tθ) dt,

(s, θ) ∈ R × S
1, θ⊥ = (−θ2, θ1) for θ = (θ1, θ2) ∈ S

1,

(1.1a)

Da(x, θ) =
∫ +∞

0
a(x + tθ) dt, (x, θ) ∈ R

2 × S
1, (1.1b)

where a and f are real-valued, sufficiently regular functions on R
2 sufficiently rapidly

vanishing at infinity, a is a parameter (attenuation coefficient), Da is the divergent beam
transform of a, f is a test function. In addition, we interpret R × S

1 as the set of all oriented
straight lines in R

2. If γ = (s, θ) ∈ R × S
1 then γ = {x ∈ R

2|x = sθ⊥ + tθ, t ∈ R} (modulo
orientation) and θ gives the orientation of γ .

The transformation Pa and the problem of its inversion (under the condition that a is
known) arise in single-photon emission computed tomography (SPECT); see, for example,
[Na1]. In SPECT (as soon as the problem is restricted to a fixed two-dimensional plane �
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identified with R
2), f is the density of emitters of x-rays (the radionuclide distribution), a is

the linear x-ray attenuation coefficient of the medium, and Pa f (γ ), γ = (s, θ) ∈ R × S
1, is

(approximately) the measured emission intensity in the direction θ at a detector at ‘+∞’ on γ

(at a detector on the connected component of γ \(supp f ∪ supp a) containing +∞ on γ ).
We consider the following inversion formula for the transformation Pa :

f (x) = 1

4π

(
− ∂

∂x1

∫
S1

K (x, θ)θ2 dθ +
∂

∂x2

∫
S1

K (x, θ)θ1 dθ

)
, (1.2a)

K (x, θ) = exp(Da(x, θ) − Aθ (xθ⊥))hθ (xθ⊥), (1.2b)

hθ (s) = cos(Bθ (s))H (exp(Aθ ) cos(Bθ )gθ )(s) + sin(Bθ (s))H (exp(Aθ ) sin(Bθ )gθ )(s),

(1.2c)

Aθ (s) = 1
2 Pa(s, θ), Bθ (s) = H Aθ(s), gθ (s) = Pa f (s, θ), (1.2d)

where P = P0 is the classical two-dimensional x-ray transformation, H is the Hilbert
transformation defined by the formula

H u(s) = 1

π
pv

∫
R

u(t)

s − t
dt, (1.3)

where u is a test function, x = (x1, x2) ∈ R
2, θ = (θ1, θ2) ∈ S

1, θ⊥ = (−θ2, θ1), s ∈ R, dθ is
the standard element of arc length on S

1.
In a slightly different form (using complex notations) the formula (1.2) was obtained

in [No1]. The formula (1.2) was successfully implemented numerically in [Ku] and in [Na2].
In the present note we give the first application of the formula (1.2) to the attenuation

correction in real SPECT imaging, i.e. to finding a real radionuclide distribution f on R
2 from

real SPECT projections g ≈ Pa f on R×S
1, under the condition that a on R

2 is approximately
known (and a �≈ 0). Note that in SPECT one finds a in advance by methods of transmission
computed tomography.

In section 2 we discuss the SPECT reconstruction algorithm based on (1.2) and in section 3
we give examples of reconstruction from real SPECT data provided by the Service Hospitalier
Frédéric Joliot.

Concerning other results given in the literature on the attenuation correction problem in
SPECT, see references given in [Na1, MIMIKIH, Ku, No2]. In particular, the reader interested
in the history of analytic inversion methods and formulae in SPECT is referred to [Ku, No1,
No2].

2. Reconstruction algorithm

The formula (1.2) admits a numerical implementation via a direct generalization of the filtered
backprojection (FBP) algorithm (see [Na1] for the description of the FBP algorithm). This
implementation follows the obvious structure of (1.2) and takes H with low-frequency filters
(where a low-frequency filter for H in (1.2d) can differ from a low-frequency filter for H
in (1.2c)). Note that H with a low-frequency filter ŵ can be viewed as the transformation Hw

defined by the formula

Hwu(s) = 1√
2π

∫
R

eisσ ŵ(σ )
sgn(σ )

i
û(σ ) dσ,

û(σ ) = 1√
2π

∫
R

e−isσ u(s) ds,
(2.1)

where u is a test function, ŵ(σ ) ∼ 1 for small |σ | and ŵ(σ ) ∼ 0 for large |σ |.
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The above-mentioned SPECT reconstruction algorithm based on (1.2) was proposed and
successfully implemented numerically in [Ku]. A similar algorithm was also developed
in [Na2].

The work [Ku] contains a detailed description of the algorithm and gives a variety of
numerical examples showing that the algorithm is capable of accurately finding f from
g ≈ Pa f and a even in the case of a strongly nonuniform attenuation coefficient a and
moderately noisy projections g. Nevertheless, numerical examples of [Ku] also showed that
the algorithm of [Ku] is more sensitive to noise in projections than the FBP algorithm and,
therefore, to apply (1.2) to real SPECT imaging, further investigations are necessary. In
addition, some approaches increasing the stability of the algorithm of [Ku] are discussed in
the preprint version of [Ku].

In the following part of this section we describe the scheme we use to apply (1.2) to real
SPECT imaging.

We decompose f and K of (1.2) as follows:

f (x) = ε1(x) + ε2(x), (2.2a)

K (x, θ) = K1(x, θ) + K2(x, θ), (2.2b)

ε j(x) = 1

4π

(
− ∂

∂x1

∫
S1

K j (x, θ)θ2 dθ +
∂

∂x2

∫
S1

K j(x, θ)θ1 dθ

)
, j = 1, 2, (2.2c)

K1(x, θ) = hθ (xθ⊥),

K2(x, θ) = (exp(Da(x, θ) − Aθ (xθ⊥)) − 1)hθ (xθ⊥),
(2.2d)

where x ∈ R
2, θ ∈ S

1, h is defined by (1.2c). The function ε1 computed via (2.2c), (2.2d),
(1.2c), (1.2d) on the basis of the algorithm of [Ku] is considerably less sensitive to noise in
projections g than the function ε2 computed similarly. Therefore, for the case of considerably
noisy projections g, when computing K1 we filter g in one way and when computing K2 we
filter g in another (stronger) way.

Given SPECT projections g and the attenuation distribution a, we consider:
(I)

g−
θ (s) =

{
gθ(s) − cθ (s) for gθ (s) − cθ (s) � 0

0 for gθ (s) − cθ (s) < 0,
(2.3)

where (s, θ) ∈ R × S
1, cθ (s) is a non-negative function approximating the average noise

of photon scattering. In the simplest nonzero approximation (actually used in the present
work) cθ (s) is identically the constant equal to the average intensity measured by detectors
along oriented straight lines passing near the object (containing emitters of x-rays) but not
intersecting it;

(II)

η j g
−
θ(ϕ)(s) = 1

2π

∫
R

∑
k∈Z

η̂ j(σ, k)ĝ−(σ, k)eikϕeisσ dσ, j = 1, 2,

ĝ−(σ, k) = 1

2π

∫
R

∫ 2π

0
g−

θ(ϕ)(s)e
−ikϕe−isσ dϕ ds,

(2.4)

where s ∈ R, ϕ ∈ [0, 2π], θ(ϕ) = (cos ϕ, sin ϕ), σ ∈ R, k ∈ Z, η̂1, η̂2 are two-dimensional
low-frequency filters;

(III)

ã(x) = χ1a(x) = 1

2π

∫
R2

χ̂1(p)â(p)eipx d p, x ∈ R
2,

â(p) = 1

2π

∫
R2

a(x)e−ipx dx, p ∈ R
2,

(2.5)
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where χ̂1 is a two-dimensional low-frequency filter;
(IV)

f1(x) = χ2 f (x) = 1

2π

∫
R2

χ̂2(p) f̂ (p)eipx d p, x ∈ R
2,

f̂ (p) = 1

2π

∫
R2

f (x)e−ipx dx, p ∈ R
2,

(2.6)

where f is constructed via (1.2a), (2.2b), (2.2d), (1.2c), (1.2d) (on the basis of the above-
mentioned algorithm of [Ku]), where a is replaced by ã = χ1a, g is replaced by η1g− and
η2g− in, respectively, the computations for K1 and K2, and χ̂2 is a two-dimensional low-
frequency filter.

We consider f1 of (2.6) as the first approximation to the real radionuclide distribution
f real . The use of the low-frequency filters η̂1, η̂2, χ̂1, χ̂2 permits us to increase considerably
the stability of the initial algorithm of [Ku]. The use of the filter χ̂1 also permits us to make
an additional correction on photon scattering. As soon as f1 is found we consider

λ1 = ‖Pã f1 − g−‖
‖g−‖ , (2.7)

where the norm ‖ · ‖ is defined by the formula

‖u‖ = 1
2

(∫
S1

∫
R

(1 + exp[Pã(s, θ)])2|u(s, θ)|2 ds dθ

)1/2

. (2.8)

We say that f1 is a good approximation to the real radionuclide distribution f real if λ1 is
considerably smaller than 1. To improve the reconstruction result given by f1, we proceed as
follows. We compute

Gθ (s) = (g−
θ (s) + µ)

P f1(s, θ) + µ

Pã f1(s, θ) + µ
− µ, (s, θ) ∈ R × S

1, (2.9)

where µ is some sufficiently small positive constant depending on Pã f1 such that
Pã f1(s, θ)+µ > 0 for (s, θ) ∈ R×S

1. We consider G as an approximation to the unattenuated
x-ray transform P f real of the real radionuclide distribution f real . We enforce the conditions

g−
θ (s) � Gθ (s) � exp(Pã(s, θ))g−

θ (s), (s, θ) ∈ R × S
1, (2.10)

and compute

f2 = P−1G (2.11)

using (1.2) with a ≡ 0 and Hw (defined by (2.1)) in place of H (i.e. using a variant of the
classical FBP algorithm). We consider f2 as the second approximation to the real radionuclide
distribution f real .

Note that the passage from f1 to f2 via (2.9)–(2.11) is a variation of the step of the
iterative SPECT reconstruction algorithm of [MNOY] (see also a review of [MIMIKIH]) and
is a variation of the techniques proposed in section 6.2 of the preprint version of [Ku] to increase
the stability of the initial algorithm based on (1.2).

As soon as f2 is found we consider

λ2 = ‖Pã f2 − g−‖
‖Pã f1 − g−‖ , (2.12)

where the norm is defined by (2.8). We say that f2 gives a better reconstruction result than f1

if λ2 is noticeably smaller than 1.
Note that if λ2 is considerably smaller than 1 we continue the iterative reconstruction with

the step described by (2.9)–(2.11) as long as the reconstruction result considerably improves.
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Figure 1. Axial (left) and transverse (right) sections through the phantom. The position of the
lines ltr , lax indicate the level of the section on the alternate image.

3. Reconstruction examples

We consider a version of the so-called Utah phantom (designed at the 2nd International Meeting
on fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine,
Snowbird, Utah, 1993). The geometry of the phantom is shown in figure 1. Geometrically, the
phantom consists of a large cylinder (B) surrounded by an annulus (C) and of two cylinders (D)

and (  E) inserted in the large cylinder. In addition: C = 20 mm (annular width), D = 43 mm
(diameter) × 105 mm (length), E = 43 mm (diameter) × 55 mm (length).

In our experiment, the regions (E) and (D) were filled with solutions (NH4I and K2HPO4,
respectively) of high density but without any activity for the emission acquisition, the regions
(B) and (C) were filled with water and with a radioactive solution (I123) of 763 and 772 nl ml−1,
respectively.

In the present note we deal with SPECT imaging for three different transverse sections
through the phantom. We consider the transverse sections by planes �1,�2,�3, where �1

intersects only (B) and (C), �2 intersects only (B), (C) and (D), �3 intersects (B), (C), (D)

and (E). The section by �3 coincides with the transverse section of figure 1.
For each of our examples of SPECT imaging, the data (we reconstructed from) consist of an

attenuation map and emission data. The attenuation map was obtained using the transmission
tomography and consists of approximate values of the attenuation coefficient on a 129 × 129
grid with pixel size 3.4 mm. The emission data consist of 128 projections equispaced in 360◦
with 129 samples (and the discretization step 3.4 mm) each. We compute the image on the
same 129 × 129 grid on which the attenuation map is given.

Figures 2(A)–(C) show the attenuation maps on the planes �1,�2,�3, respectively.
Figures 3(A)–(C) show the profiles (with their maximum values) of the attenuation maps 2(A)–
(C), respectively, at the level of the axial section through the phantom. Figures 4(A)–(C) show
the emission data for the sections by �1,�2,�3, respectively. Note that the emission data
were measured with the energy window 0.9E–1.1E , where E = 159 keV is the major energy
peak of I 123, at 60 s/projection, the radius of rotation was 261 mm. Our main reconstruction
results on �1,�2,�3 are shown in figures 5–8.

Notice that all two-dimensional images of the present work were drawn using a linear
grey scale, in such a way that the dark grey colour represents zero (or negative values, if any)
and white corresponds to the maximum value of the imaged function.

Images shown in figures 5(A), 6(A), 7(A) were obtained as the first approximation f1

of section 2 (see (2.6)). In addition, the low-frequency filters η̂1, η̂2, χ̂1, χ̂2, were taken as
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Figure 2. Attenuation maps on �1, �2, �3.

Figure 3. Profiles (with their maximum values) of the images 2(A)–(C) at the level of the axial
section through the phantom: (A) max = 0.1 cm−1, (B) max = 0.24 cm−1, (C) max = 0.4 cm−1.

Figure 4. Emission data g(cos ϕ,sin ϕ)(s) for the sections by �1, �2, �3. (For each of figures (A)–
(C) the angle ϕ increases from 0 at the bottom to 2π at the top and s increases from right to left.)

Figure 5. Stabilized reconstruction on �1 (for α1 = 1/2, α2 = 1/3, β = 1/2). (A) First
approximation with λ1 = 0.17. (B) Second approximation with λ2 = 0.97. (C) Profile of the
image B at the level of the axial section through the phantom.

follows:

η̂1(σ, k) =




(
sin(πσ/α1σnyq)

πσ/α1σnyq

)2

for |σ | � α1σnyq ,

0 for |σ | > α1σnyq

, (3.1)
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Figure 6. Stabilized reconstruction on �2 (for α1 = 1/2, α2 = 1/3, β = 1/2). (A) First
approximation with λ1 = 0.21. (B) Second approximation with λ2 = 0.94. (C) Profile of the
image B at the level of the axial section through the phantom.

Figure 7. Stabilized reconstruction on �3 (for α1 = 1/2, α2 = 1/3, β = 1/2). (A) First
approximation with λ1 = 0.24. (B) Second approximation with λ2 = 0.87. (C) Profile of the
image B at the level of the axial section through the phantom.

Figure 8. Stabilized reconstruction on �3 (for α1 = 1/2, α2 = 1/3, β = 1/4). (A) First
approximation with λ1 = 0.23. (B) Second approximation with λ2 = 0.89. (C) Profile of the
image B at the level of the axial section through the phantom.

η̂2(σ, k) =




(
sin(πσ/α2σnyq)

(πσ/α2σnyq)

sin(πk/α2knyq)

(πk/α2knyq)

)2

for |σ | � α2σnyq, |k| � α2knyq,

0 for |σ | > α2σnyq or |k| � α2knyq,

(3.2)

where σnyq, knyq denote the Nyquist frequencies of the discretization in s, ϕ, respectively, and
α1, α2 were taken as 1/2, 1/3, respectively;

χ̂1(p) =




(
sin(π |p|/βω)

π |p|/βω

)2

for |p| � βω,

0 for |p| > βω,

(3.3)
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Figure 9. Regularized reconstruction on �3 with no attenuation correction; the two-dimensional
image (left) and its profile at the level of the axial section through the phantom (right).

Figure 10. Regularized reconstruction on �3 by the initial algorithm of [Ku] (with no filters
η̂1, η̂2, χ̂1, χ̂2); the two-dimensional image (left) and its profile at the level of the axial section
through the phantom (right).

χ̂3(p) ≡ 1, (3.4)

where ω denotes the Nyquist frequency of the discretization in x and β was taken as 1/2.
In addition, the Hilbert transformation H in (1.2c), (1.2d) was taken with the low-frequency
filters ŵ1, ŵ2, respectively, as follows:

ŵ1(σ ) =




(
sin(πσ/α1σnyq)

πσ/α1σnyq

)2

for |σ | � α1σnyq ,

0 for |σ | > α1σnyq ,

(3.5)

ŵ2(σ ) = sin(πσ/σnyq)

πσ/σnyq
, (3.6)

where σnyq and α1 are as in (3.1).
Images shown in figures 5(B), 6(B), 7(B) were obtained as the second approximation f2

of section 2 (see (2.11)). In addition, the Hilbert transformation H in (1.2) with a ≡ 0 was
taken with the low-frequency filter ŵ1 of (3.5). Further iterative reconstruction mentioned in
section 2 very little improves the result given by f2 for the examples of the present note. For
the examples of the present note, we consider the product λ1λ2 as a number meaning the part
of g− that is out of the range of Pã .

Reconstruction results on �2, �3 shown in figures 6 and 7 are not yet perfect because
in this note our algorithm properly corrects only for nonuniform attenuation effects (among
all the physical effects arising in SPECT). Reconstruction results on �2,�3 look better if we
reduce the parameter β from 1/2 to 1/4. This reconstruction result on �3 is shown in figure 8.

Finally, figure 9 shows the image reconstructed on �3 via (1.2) with a ≡ 0, where H was
taken with the low-frequency filter ŵ1 of (3.5), figure 10 shows the image reconstructed on �3
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by the initial algorithm of [Ku], where H in (1.2c) was taken with the low-frequency filter ŵ1

of (3.5).
The reconstruction shown in figure 9 is stable but contains the usual errors of no attenuation

correction (for example, a considerable negative artifact in the region (E) (defined in figure 1)).
In fact, negative artifacts make a great contrast between the regions (E), (D) on one hand,
and region (B) on the other hand, as seen in figure 9. However, these artifacts could mask the
emission activity in (E) and (D) in some other cases of the radionuclide distribution.

The reconstruction shown in figure 10 is still rather unstable.

4. Conclusions

The noise sensitivity of the initial algorithm of [Ku] implementing numerically the inversion
formula (1.2) is significantly reduced by means of the techniques described in section 2.

The results of the present note show that the formula (1.2) can indeed be used for
nonuniform attenuation correction in real SPECT imaging. The formula (1.2) can be used, in
particular, for fast computing of an efficient first approximation for more complicated SPECT
reconstruction techniques, correcting not only for effects of nonuniform attenuation.

We plan to take further the approach based on (1.2) to nonuniform attenuation correction
in SPECT. More precisely, we plan: to study further possibilities to improve the stability of
the algorithm based on (1.2), to use this algorithm in the framework of techniques correcting
not only for attenuation effects, and to consider further (more interesting) examples of real
SPECT imaging.
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