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Abstract

We present explicit filtration/backprojection-type formulae for the inversion of
the spherical (circular) mean transform with the centers lying on the boundary
of some polyhedra (or polygons, in 2D). The formulae are derived using
the double-layer potentials for the wave equation, for domains with certain
symmetries. The formulae are valid for a rectangle and certain triangles in
2D, and for a cuboid, certain right prisms and a certain pyramid in 3D. All
the present inversion formulae yield exact reconstruction within the domain
surrounded by the acquisition surface even in the presence of exterior sources.

Introduction

The spherical mean Radon transform and related inversion formulae are important, in
particular, for solving problems of thermo- and photo-acoustic tomography (TAT/PAT)
[24, 25, 29]. In these modalities, a region of interest (ROI) within a human body is subjected to
a very short electromagnetic (EM) pulse which causes thermoelastic expansion of the tissues
and generates an outgoing acoustic wave. The resulting acoustic pressure is measured by the
detectors placed on a surface surrounding the ROI. The initial pressure distribution f(x) is
not uniform: tumors absorb much more EM energy than healthy tissue and thus generate a
much stronger signal. Hence, by recovering f(x), one obtains valuable medical information.

Under certain simplifying assumptions, the problem of finding the initial pressure can
be re-stated as that of inverting the spherical mean Radon transform in 3D over spheres with
centers lying at the measuring surface. A similar problem in 2D arises when instead of usual
point-like detectors, one measures the acoustic pressure with linear detectors [6, 32, 33].
A detailed discussion of the solvability, range conditions, and inversion techniques for the
spherical mean transform in 2D and 3D can be found in [1-4, 11-13, 18-21, 34, 38-40] and
references therein.
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In this paper, we derive explicit inversion formulae for the spherical (or, in 2D, circular)
mean transform for certain measurement surfaces with special symmetries. In general, such
explicit formulae play an important role in inverse problems: they provide an important
theoretical insight and, in some cases, they serve as a starting point for the development of
efficient reconstruction algorithms. For example, a very popular filtration/backprojection
(FBP) algorithm (see, for example, [26]) is obtained as a result of discretization of one of the
explicit inversion formulae for the 2D Radon transform.

In general, a designer of measuring equipment has a certain freedom in choosing the types
of detectors (conventional point-like detectors, or novel integrating line (or planar) detectors
[31, 32]) and in positioning them around the measuring volume. Completely surrounding the
region by detectors is preferable, but not always possible, as, for example, in breast imaging.
It is also desirable to place the detectors as close to the region as possible, to reduce the
attenuation of the signal. Among other factors, the designer needs to take into account the
existence of inversion formulae or other efficient reconstruction techniques for the desired
acquisition geometry. From a practical point of view, the new inversion formulae presented
in this paper will widen the choice of measuring geometries; we hope that they will find
application in imaging, in particular, that is done using line and planar detectors.

For the spherical mean Radon transform, the inversion formulae of the FBP type are
known only for special types of acquisition surfaces. In particular, several different formulae
for the 4-spherical measuring surface have been found in [41, 43] (in 3D), [11] (in odd
dimensions), [10] (in even dimensions), and [21] (in arbitrary dimensions). A general family
containing, as particular cases, all the above-mentioned formulae for a sphere was derived in
[27]. The so-called universal backprojection formula [43] (already mentioned above) holds
not only for a spherical measuring surface, but also for a surface of an infinite cylinder and
a plane [42, 43] (both in 3D). Other formulae for the planar acquisition are also known
[6, 8, 9, 28, 30]. The existence of the FBP-type formulae for these three types of surfaces
(and the absence of such formulae for other smooth surfaces) can be explained by certain
symmetries common to a sphere, a plane, and a cylinder, as discussed in [20].

For other measuring surfaces, there exist certain numerical techniques for solving the
problems TAT/PAT (see [1, 20, 34, 38—40] and references therein), but the inversion formulae
for such surfaces are not known. (The notable exception is the explicit general solution
obtained in [1] for any closed surface; however, this solution is given in terms of functions of
the wave operator rather than in a form of a closed-form integro-differential expression). In
this paper, we derive explicit FBP-type inversion formulae for the spherical mean transform
with the centers lying on the surfaces of certain polyhedra (in 3D) or on the boundaries of
certain polygons (for the circular mean transform in 2D).

The paper is organized as follows. In section 1, we provide a formal description of
the problem and supply some introductory information. Next, in section 2, we explicitly solve
the time-reversal problem for the wave equation in a cube or a square (in 2D) by means of the
double-layer wave potentials. Such a solution is possible due to certain symmetries of these
regions. Next, in section 3, from the explicit solution of the wave equation, we derive FBP-
type formulae for the inversion of the spherical (circular) mean transform with centers on the
boundary of a cube (square). The present inversion formulae have an interesting property of
being insensitive to acoustic sources lying outside of the region surrounded by the acquisition
surface, as discussed in section 3.3. Numerical examples of image reconstructions obtained
using our formulae are provided in section 3.4. Finally, in section 4, we apply the same
methods to some other domains possessing the necessary symmetries. In 2D, these include
a rectangle and three types of triangles: an equilateral and a right isosceles triangle, and a
triangle with the angles 7, % and % In 3D, our formulae extend to cuboids, right prisms
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whose base is one of the three triangles mentioned above, and a pyramid whose side faces are
equal right isosceles triangles.

1. Formulation of the problem

Throughout the paper, we assume that the source of the acoustic pressure is supported within
a bounded region 2, the detectors are placed on the boundary 92, and the speed of sound is
constant and equal to 1 in the whole space R”. The time-dependent acoustic pressure p(x, t)
satisfies the wave equation

{Ptt=AxP, t>0, xeR®
p(x50)=f(x)’ Pt(x50)=(),

where the initial pressure f(x) is supported within 2. The detectors measure the values
P(y, t) of the pressure on the boundary:

P(yit):p(y7[)|y€39’ IE[0,00) (2)

Our goal is to reconstruct f(x) from measurements P(y, t).

When the measurements are done using conventional point-like acoustic detectors, the
above problem has to be solved in 3D setting. However, when the so-called line detectors are
utilized [6, 32, 33], the 3D problem reduces to a set of similar 2D inverse problems for the
wave equation, so from a practical point of view both 2D and 3D cases are of interest.

In the 3D case, the measurements need only be done during the time interval [0, diam €2],
since the signal vanishes after + = diam 2 due to the Huygens principle [37]. In the 2D case,
the signal does not vanish in finite time. Nevertheless, a theoretically exact reconstruction
from measurements over a finite time interval is possible even if the speed of sound is variable
[35, 36]. In the simpler case of the constant speed of sound, we consider here, the knowledge
of values of P(y, f) for ¢ € [0, diam 2] is enough to explicitly reconstruct P(y, f) fort > diam 2
(see [10, 31], and the discussion at the end of the next section).

(D

1.1. Spherical means

The problem of finding f(x) can also be re-formulated in terms of inverting the spherical
mean transform. Indeed, in 3D, the solution to the initial value problem (1) can be written in
the form of the Kirchhoff formula

ad
p(xvt)=atM(x’t)9 (3)
where M (x, ) are the spherical means of f(x):

M(x, 1) = %/32 f(x +tw)do,

and where S2 is the unit sphere in 3D. Thus, using (2), one can relate the spherical means M(y,
fHto P(y,t):

0
P(y,t) =—tM(y, 1),
(v, 1) o (v, 1)
and, taking into account that M (y, 0) = 0, solve for M (y, t):
1 t
M(y,t) = ;/ P(y,t)dr'.
0

Now the problem is reduced to finding the function f(x) from its spherical means M(y, f) with
centers on 9€2.
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Similarly, in 2D, one can introduce the circular means m(x, 7):

m(x, 1) = %/sl f(x + tw) dw.

Now the solution of (1) can be expressed through m (x, 7) by the formula

9 ("m(x,7)rdr

7t = =
p(x, 1) o),
and, in particular,
9 ["m(y,T)rdr
P(y,t) = — —_—, € Q. 4

The integral on the right-hand side of the latter equation is the well-known Abel transform
whose inversion formula is also well known. Thus, the circular means m(y, t) can be found
from P(y, t) by the following formula:

(. 7) 2 [T P(y,t)dt
m ’ = - e
Y T Jo JTr—12

which again leads to the problem of reconstructing f(x) from its cylindrical means m(y, 7).
(Since m(y, t) vanish for t > diam €2, the knowledge of P(y, ) in the time interval
t € [0, diam €2] is sufficient to reconstruct m(y, t) using the latter formula; moreover, the
values of P(y, ) for ¢t > diam €2 can now be recovered from m(y, t) by equation (4).)

1.2. Reconstruction strategies

It is well known that the initial pressure f(x) can be found by the time reversal, i.e. by
solving the wave equation back in time. In particular, in the 3D case, since the solution to (1)
vanishes within 2 after t = diam €2 due to the Huygens principle, one can solve the following
initial-boundary-value problem backward in time:

Uy = A, tel0,T], xeQcCR
ulx, T)y=0, u,(x,T)=0,

u(y,t) =P(y,1), y€a,

T = diam Q.

(&)

The function f(x) we seek to recover equals u at the moment O:

f&x) =u(y,0). (6)

In 2D, the solution to the wave equation does not vanish in a finite time, and therefore the
initial condition should be replaced by the condition of the decrease at t — oo:

Uy = Awu, tel0,00), xeQcCR?
lim u(x,T) =0, lim u,(x,T) =0, (7)
T—o00 T—oo

u(y,t) = P(y,t), yeadQ.

As in 3D, f(x) is found using formula (6).

The above initial-boundary-value problems can be solved numerically using, for example,
finite-difference methods (e.g. [5, 7]). For certain acquisition surfaces, methods based on
eigenfunction expansion can also be very effective [22]. Our goal, however, is to obtain an
explicit FBP-type formula for the solution. If the existing detectors could measure (in addition
to the pressure) the normal derivative of the pressure, such an explicit analytic solution could
have been represented, using the Green’s formula, in the form of the double- and single-layer
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potentials. Unfortunately, the normal derivative is not known. Still, explicit representations
of the solution of the wave equation by means of the double-layer potential are possible for
surfaces with certain symmetries, such as, for example, a sphere, a cylinder, and a plane. In
fact, the so-called universal backprojection formula [43] for these surfaces can be interpreted
as the evaluation of a certain double-layer potential.

In the next section, we find explicit inversion formulae for the case when €2 is a cube (in
3D) or a square (in 2D). First, we obtain explicit solutions for the problems (5) and (7) in the
form of the double-layer potentials. These formulae allow us to reconstruct f(x) from the
measured values of the pressure P (y, t); in section 3, they will also be used to derive explicit
FBP time formulae for recovering f (x) from its spherical (circular) means in these domains.

2. Explicit solution of the wave equation in a cube or a square

2.1. Double-layer potentials

In 3D, the retarded free-space Green’s function G3P*(x, t) is given by the following formula
[37]:

5(t —
G ey = 21D,
47 |x|
it solves the equation
GP* — AG = 8(1)8(|x)) (8)

subject to the radiation condition as ¢t — oco. We will need the advanced Green’s function
GP~(x, 1),

5+ D)

G (x,1) = GP*(x,—1) = , 9)

4 |x|

that solves (8) back in time and satisfies the radiation condition as t — —oo0.

The double- and single-layer potentials are frequently used in the theory of partial
differential equations (see e.g. [37]). The wave potentials that solve the time-dependent
wave equation were introduced in [14, 15] (see also [16]). We summarize below some of the
basic properties of the wave potentials that will be needed for further use. (Here, we sacrifice
generality for simplicity and discuss only the properties that will be used later in the text.)

Given a plane IT and a function ¢(y, t), y € I1, which is continuous, twice differentiable
in time and compactly supported in both variables, we introduce the (advanced) single-layer
potential U(x, ¢) and the double-layer potential V(x, 7) with the density ¢(y, t) as follows:

U(x,t) =/ /<p(y,t/)G3D—(y—x,t—t/)ds(y)dt/, (10)
R!' J1I
/ / / 0 3D— / /

Vix,1) = ey, ) —G" " (y —x,t —t)ds(y)dt’, (11)
R! J1I 8ny

where n is the normal to Il, and ds(y) is the standard area element. Note that both
U(x, t) and V(x, 1) satisfy the wave equation for all x outside IT; both potentials describe
waves propagating (backward in time) away from the support of ¢, and they satisfy the
radiation condition at infinity as 1 — —o0. Also, V(x,t) = 0 for all x € I, and due to the
standard jump conditions [16]

1
lim 0V(y +en,t) = :tzﬁﬂ(y»l), y eIl

e—>0,6>
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Since G3P~ (x, t) vanishes for positive values of ¢, equation (11) implies that if ¢(y, t) vanishes
fort > ty, then so does V (x, t). Finally, since n is constant, using (9), V(x, ) can be re-written
as follows:

1 S+ |y —
Venn =—pn-v, [ EEEE I g
4 n 4|y — x|

—Ldiv/ n(/)())9t+|y_x|) ds(y). (12)
In

T 4|y — x|
We note that, due to (12) (for a planar surface only)
Vx,t) = —n-V,U(x,1). (13)

In 2D, the advanced free-space Green’s function G?P~(x, 1) has the following form [37]:

x| <zl 1 <0,

1
G (x,t) = { 2n /12 — 12

0, otherwise.

Furthermore, for a given straight line L and for a continuous, twice differentiable in time,
compactly supported in both variables function ¢(y,t), y € L, we define the single-layer
potential U(x, f) with the density ¢(y, t):

U(x,t) =//oo(p(y,t/)GZD(y—x,t—t’)dt’dl(y)

dr di(y)

oVt +T) ———

/v/I;c vl \/ﬁ

// (a w(y,t+f>>mdzdl(y) (14)
[x—yl

Now, instead of dealing directly with %GzD’ (x, t) (which would lead to strongly singular
integrals), we define the double-layer potential V(x, f) by means of (13) and (14):

Vix,t)=—n-V,U(x,t)

// (8 (0(y’t+f)>mdrdl(y)
lx—y|

// (8 w(yi”)),l_vy 22— (x — y)2dr di(y)
[x—y]|

// (8 s0(y,t+t)) n-(x—y) dr di(y)
=yl V2 —(x —y)? ’

where 7 is the normal to L, and d/(y) is the standard arc length. As before, V(x, 1) satisfies the
wave equation (now in 2D) for all x outside L and it describes an outgoing wave propagating
(backward in time) away from the support of ¢. Also, V(x,t) =0, forall x € L, and

lim V(yzxen,t)= :l: go(y, t), yeL.
e—0,6>0
2.2. Time reversal in a cube

An explicit solution to the initial-boundary-value problem (5) for the case when 2 is a cube
can be obtained using the double-layer potentials, as described below.

6
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Without loss of generality, let us assume that Q2 = (—a, a) x (—a, a) X (—a, a), and the
boundary 9€2 consists of six faces S;, j =1,...,6:

6
w=_Js;
j=1

In this case, the wave leaves Q after time 7 = diamQ = 24/3a. Let us assume that
x = (x1,x2,x3), and that the face S lies in the plane x; = a. First, we will solve the
initial-boundary-value problem with non-zero boundary conditions on face S only:

gy =Awu, tel0,T], xeQcR

M(.x, T):O’ Mt(-va):()»

S_}%)I"I;>Ou(y_8n17t)=P(yvt)f y €81, (15)
6
u(y,n=0, yelUs;,

Jj=2
where n; is the exterior normal to S;. The solution procedure we are about to outline will
apply also to the other faces S;, j = 2, ..., 6, and the solution of the problem (5) will then be
readily obtained as the sum of the solutions corresponding to each face.

To simplify the presentation, let us introduce an operator E2P that extends any function
h(xs, x3) defined in the open square (—a, a) X (—a, a) to a function A™P!(x,, x3) defined in
R? by means of odd reflections. In detail, if #™P! = E?Ph, then h™' coincides with 4 within
(—a, a) x (—a, a); furthermore, for any point (x;, x3) lying in an open square s, ,, with the
side 2a and centered at (2na, 2ma), h™P'(x,, x3) is defined by the following formula:

P (x, x3) = (=1)""h(a. (=1)" (x2 — 2na). (=1)" (x3 — 2ma)).
Finally, on the boundary of each square s, _,,,, we define the function 2™P!(x,, x3) to be zero.

Let us denote by IT{ the plane containing S;, and introduce plane H? parallel to IT{
and passing through the point (—3a, 0, 0). We equip both planes with the same normal n,
coinciding with the exterior normal to face S;. We introduce the function P; Plxy, x3,1) =
E®™ (P(x,1)ls,) . i.e. we replicate the boundary values of u on face S;. Now, for € [0, T,
we define the double-layer potentials V{(x, #) and V' (x, t) with the density —2P," (2, v3, 1)
supported on planes I1{ and HZI’:

a | ni repl
Vix,t) = ——div [ —————P;" (32, 3.t +1(a, y2, y3) — x|) dy> dys,
27 r: |(a, y2, ¥3) — x|

1 . n I
Vi(x, 1) = —dIV/ 1 P (2, y3, 1+ |(=3a, y2, y3) — x|) dy, dys.
2 r2 [(=3a, y2, y3) — x|
(16)

Note that since P is finitely supported in [0, T] in the time variable, the integrands in the
above expressions vanish for large values of y, or y3, and therefore the integration is actually
performed over bounded subsets of R? lying within the ball B(x, T — t). In order to make
expressions (16) simpler, we will abuse notation by writing P{™(y, 1) for y € I or y € IT?
instead of P,rep](yg, 3, 1):

Ve (x, 1) = %div/

n4’NBx,T—1) ly — x|

ni

Py, t+ly —xDds(y), (17

where ds(y) is the standard area element, and Vla’b means either V' or Vlb.
The combined potential V;(x,t) = V{(x,1) + V1h (x, 1) has some interesting properties.
Let us denote by S, the face of cube 2 opposite to S;. We note that planes IT{ and 1'[? are

7
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symmetric with respect to S, and, due to the choice of the normals, the potential Vi (x, 1)
vanishes on S,. Next, due to the oddness of Prepl the potential Vi (x, t) vanishes on the other
four faces S; of the cube (j = 3,...,6). Fmally, since T is smaller than the distance between
I1¢ and T2, the potential V) (x, 1) equals 0 on I1¢ for all # < T. Therefore,
lim Vi(y —eéen, t) = l%)m 0Vl“(y —eny,t) = P(y,t), ye€S.
,E>

e—0,6>0

Thus, the potential V) (x, ) solves the initial-boundary-value problem (15). For brevity, we
will re-write the expression for V;(x, t) in the following form:

1 . ni repl
Vi(x,t) = —div y t+ 1y —x)ds(y).
27 (M4Un?)NB(x, T—1) ly — x|

In order to obtain the desired solution to (5), we replicate the boundary values on the faces
Sz, ey SGZ

PP, 1) = EP(P(,Dls),  j=2.....6. (18)

Next, we introduce planes ITjand H’; with normals 7 ;, and define double-layer potentials V;
with the densities —ZP;epl( y,t) on T4 and I1%:

1 . n; repl .
Vix,t) = ——div : ] (y,t+ 1]y —x])ds(y), j=2,...,6.

2 meun)nBe,7—n 1Y — |
The sum of these potentials V(x,t) = Z?zl V;(x,t) solves the initial-boundary-value
problem (5), and, therefore, f(x) equals V (x, 0):

repl
(s ly —xI)
fx) = Vi(x,0) = — d1v / ——ds(y). (19)
Z Z 4UMY)NB(x, T) ly — x|

If the initial condition f(x) we seek is four times differentiable, the potential densities

PP 1( v, t) constructed as described above are three times differentiable in time, and potentials
V;(x,t) solve the wave equation in €2 in the classical sense. Thus, we have proven the
following.

Theorem 1. The Cg (R2) initial condition f(x) of the initial-boundary-value problem (1)
in the case n = 3 can be reconstructed from the boundary values P(y, t) (defined by (2)) by
formulae (19) and (18).

Formula (19) closely resembles the so-called universal backprojection formula [43]
especially the version applicable to the measurements done over an infinite plane. However,
in the present case, the measurements are performed over a bounded surface (that of the cube),
and the exact reconstruction at any point x is obtained by the integration over a bounded set
B(x.T)n S, (MeuI).

2.3. Time reversal in a square

A similar technique can be used to find the explicit solution to the initial-boundary-value
problem (7) in the case when 2 is a square. The geometry of the problem is actually easier,
thanks to the lower dimensionality of the problem. However, in 2D, the Huygens principle
does not hold and the solution will result from the integration over unbounded sets.

We will assume that 2 is a square (—a, a) X (—a, a), S is the side of 2 corresponding
to x; = a, and S, is the side contained by the line x; = —a.

8
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: | S, : H T
-3a a0 a \3a 4

Figure 1. Extending function /(x) defined on interval (—a, a) to a function h'Pl(x) defined on
R!, by odd reflections.

hmpl(:E ) 3

First, let us find the solution u(x, ) to the following initial-boundary-value problem:
Uy =Awu, tel0,T], xeQcR?
ux,T)y=0, u,x,T)=0,
lim 0u(y —en,t)=P(y,0)n(T,t), yes,

e—0,e>

u(y,t) =0, yes;, j=2,3,4,
where n(7T, t) is a C* cutoff function, equal to 1, for r € [0, T — 1] and vanishing with
all the derivatives at + = T. We introduce operator E'P that extends a function A (x)
defined in the interval (—a,a) to a function A™P!(x) defined on R! by means of odd
reflections. In detail, within the interval (—a, a), the function A™P' coincides with 4. For
any x # (2m + 1)a, m € Z, there is a unique integer n(x) such that |[x — 2na| < a. We define
Pl (x) = (=1)"®h((—=1)" (x — 2n(x)a)). Finally, at the odd integer points, 4"P' vanishes:
h™P(2m + 1)a) = 0, Vm € Z. This extension procedure is illustrated in figure 1.

Let us call L, the straight line containing S . Introduce the family of lines ®; consisting of
all straight lines parallel to L;, and passing through the points (a +4ka, 0), k € Z. (Obviously,
L € ®,.) The exterior normal n; to the side S; of the square will be used as the normal to all
the lines in ;. Let us define the function P[™' (x,, 7) by replicating the values of P(x, 7) for
X € Sll

(20)

P (xy. 1) = E'(P((a. %), 1)).
We will abuse notation by writing PlrelDl (x,t) instead of the more accurate Plrepl (x2(x), 1).
Furthermore, let us introduce the double-layer potential Vi(x,t,T) with the density
—2P, Pl (x2, )n(T, t) supported on all lines in the family &, defined by the formula

Vite, 1, T) = l/ /oo (i Plrepl(y,t+r)77(T,t+t)> ny-(x—y) dr di(y).
7 Ja, Jie—y \ 97 T VT2 = (x = y)?
Note that in the above formula the integration in y is actually performed over a bounded subset
of @ due to the finite support of 7 in the second variable.
The potential V) (x, t, T') satisfies the wave equation in 2. Since Plr *?lis odd with respect to
the straight lines containing all sides of 9€2, Vlr (x, t, T) vanishes on 0Q2. However, Vi (x, 1, T)
is not continuous across S;. The jump is such that

lim Vi(y —eni, 1. T) = PP, 0n(T.0) = POLon(T, 0, yeSi, 1 el0.T],

£—0,6>

Therefore, Vi (x, t, T) solves the problem (20).
The next step is to obtain a solution u” (x, ¢) of the following boundary problem:
utT, =Aul, 1€[0,T], xeQcCR?
ul(x,T) =0, ul(x,T)=0, 2D
ul (y,t) = P(y,t)n(T,1), ye .
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This can be achieved by defining the functions P;ep1(~, t) = E'™(P(.,1)|s,) and families
of parallel lines ®; with normals n;, j = 2,3,4, and by introducing the corresponding

double-layer potentials V;(x, t, T), in a fashion similar to our definition of P| ® &,,n,, and
Vi(x,t,T). Now each V;(x,t, T) satisfies the boundary problem with the inhomogeneous
conditions on the side j, and the homogeneous conditions on the other three sides of the
square. In turn, the sum of these potentials u”,

4
ul (x, 1) = ZV-(x t,T)

_fo (a PPy i+ 0T, 040\ - (x —y) dr di(y)

repl

b, t+o)n(T,t+71)

‘d”Z [, Naerras

|y—. t\<r

di(y)dr |,

solves (21). (A somewhat simpler procedure for constructing potential densities P;ep lis
outlined in section 4.1.)
It is known [17] that as T grows to infinity, u7 (x, 0) converges uniformly to f(x):

f(x) = lim ul (x,0)

repl .
fim L3 ‘/'u/ ( d P (y, (T, r)) G a2
lx—=yl

T =y

Prepl i . .
= —Z/ / (a - T)) LD . (23)
lx—y| 72 )2

—(x—y

The latter formula is very similar to the explicit inversion formula for measurements done
from an infinite line [6]. Formula (23) can also be re-written using the Green’s function
G?P~(x — y, r) to illustrate its connection to the surface potentials:

repl
( b )
f@) = E:/I/'nj(x—y><&, ;’ )cﬂD(x—y,wdrwoa

Theorem 2. The Cg (R2) initial condition f(x) of the initial-boundary-value problem (1)
in the case n = 2 can be reconstructed from the boundary values P(y, t) (defined by (2)) by
formulae (23).

3. Explicit inversion of the spherical means: a cube and a square

3.1. Inversion formula in 3D

In 3D, in order to reconstruct f(x) from its spherical means M(y, f) with centers on 92, we
introduce replicated spherical means M ;epl(y, t) defined as follows:

Mfepl(.,.,t):EZD(M(',I)LS,-)’ j=1,...,6. (24)

J
Since the replication operator E2P is invariant with respect to the time variable, from (3) we
conclude that

rm@n——mﬁW»n (25)

10
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Now the formula for reconstructing f(x) from spherical averages in 3D is obtained by
substituting (25) into (19):

10 M
fx) = _dWZ/mnmeun (;8t Jpl( t))

We thus have proven the following.

ds(y). (26)

1=|x—-yl|

Theorem 3. In 3D, aC 4(Q) function f(x) supported within the cube 2 can be reconstructed
from its spherical means M(y, t) with centers on 92 by formula (26), where Mrepl(y, t) is

defined by (24).

Formula (26) has a form of the filtration by differentiation, followed by the backprojection,
followed by the divergence operator. It is similar to the inversion formula obtained by the
author [21] for the inversion of the spherical means with centers on a sphere (in 3D). In the
latter case, the integration is over the surface of a sphere, and no replication of the data is
needed.

A simple reconstruction algorithm can now be obtained by a straightforward discretization
of equation (26). Theoretically, if the effects of finite sampling and other numerical errors
are neglected, such an algorithm is equivalent to the time reversal of the wave equation,
and it has similar properties (such as, for example, insensitivity to the exterior sources, see
section 3.3). The present method is quite different from the fast reconstruction algorithm
for a cuboid geometry presented in our work [22]. The latter method is based not on a
backprojection-type formula, but rather on solving the wave equation in a cube by expansion
in the series of the eigenfunctions of the Dirichlet Laplacian; the result is represented by an
infinite series that is truncated in practical computations.

3.2. Inversion formula in 2D

In this section, we derive an explicit inversion formula for finding f (x) from the values of its
circular means with the centers lying on the boundary of a square. The starting point for the
derivation is equation (23) that reconstructs the sought function from the boundary values of
the solution of the wave equation; we re-write it in the following form:

I g (a3 P00\ 1
f(x):E;Ljnj.(x—y)[/s (E J - Tz_szdt | ‘dl(y)
- s=[x—y
=
== Z/ nj - = )PPy, x — ) di(y) 27)
i @
where
repl
repl 0 ipjp(y7f) 1
(v,5) = /S (81 . o dr. (28)

First, we will express f’;epl(y, s) in terms of the circular averages m(y, 7). Let us apply the

extension operator to m(y, T) and define m;e" '(v, 7) as follows:
m P ) = EPmC.Dls).  j=1....4 (29)

11
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repl repl

The function P (-, 1) is related to m;

9 mPy,nrdr g [ 9
repl _ J _ 2 _ 2 2 el
Pj v, t) = — —_Bt/O Vit T 87:mj (y,7)dr

(-, t) in the same way as P (-, t) is related to m(-, 7):

ot Jo V12—t
t 40 repl(y’ ‘L’)
= T
0 «/t2
tp 0 9 repl T '
= rar v )‘L'd‘L’ = / 2 (2 repl(y, 7) | 1/ 1% — 2 dr,
0 ,2 — 12 0o 0T 9t

where we integrated by parts twice, and used the fact that mrep]

can compute the derivative needed in (28):

d o (19 d
i = 5[5 (oo ) Vi e
_t/t Bar(tdr repl(y’r)) dr
0 NtE— 12

By substituting the above equation into (28), interchanging the integration order, and noting
repl repl

(v,0) = 0 for all y. Now one

that m; (y,t)=0fort > 2+/2a, one obtains the following expression for P 7 (v, 8):
repl repl
) =1 — , dr dt
r(.9) Tglgo/ / ot (‘173‘[ v T)> V12 \/t2 —s2 i

Zﬁa T
= lim 9 ( 0 repl(y r)) |:/ ! dt] dr
T—o0 Jg 0T \ 70T max(s,7) \/tz — 'L'2\/ 12— 52
= lim

24/2a P P
9 repl
P ( v, r))

rat
x |In (VT2 = s2+/T2 — 12 —lln |72 — s2|) | de
( ;

1 2y2a ) 0 0 repl repl
:__/ In (12 = 5%1) ~— [ —=m"" (v, ) ) dr P*P (3, 1)
0

2 ot \ 1071
Wi g g X
+ lim —(—=—m"™(y, 1) | In(v/T2 — 52 + /T2 — 1) dr. (30)
T—o0 0 aT 'L'a'L' J

The last integral in (30) vanishes:

AL R -
lim | —=—m"(y, 1) | In(v/T2 — s2 + /T2 — 22)dr
T—o0 Jo ot \totr
2V2a ) T
= lim rep (yv dt = 0,
T—o00 Jg ‘[31’ (\/Tz—S2+\/T2—'L’2)«/T2—‘[2

where we integrated by parts and used the finite support of m;epl( v, 7) in 7. Now (30) can be
re-written in the following form:

PRy, s) = I/Zﬂaln(lfz ) L (g o
S —s57|) — ,
Y 2 Jo at \tot Y

22 1 0 repl
=PV ————m P (y, 1) dr,
0 T

12
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where ‘PV’ indicates that the integral is understood in the principal value sense. Substitution

of the latter expression for P T (y s) into (27) yields the following sequence of equivalent
reconstruction formulae for f (x)

1 224 1 bl repl
f("):EZA,.'”'(X—” [T g

di(y)

s=lx—y|

nj-(x—y) /2 3
Z/ jlx = (as [ e sy o i (y)
s=lx—yl
9 2v2a Tmrépl( )
T Z/ T _PV/ e di(y) 31)
|x - J’| s 0 T —5 -
s=lx—y
! 220 ey, )
B EZ / nj -V (PV / g0 di(y) (32)
j=17%i 0 - s=jr—y|

2V2a rePl(y7 )

Thus, the followmg statement holds.

Theorem4. In2D,a Cé () function f (x) supported within the square Q2 can be reconstructed
from its circular means m(y, t) with centers on 32 by formula (33) (or, equivalently, by
formulae (31) or (32)), where m;epl(y, T) is defined by (29).

Formula (33) closely resembles the author’s formula for reconstructing a function from
its circular means centered on a circle [21] re-written as presented in [2], formula 8.19.

The drawback of formulae (31)-(33) is that the integration has to be done over an
unbounded set U‘]‘.:ld)j. However, by analyzing the expression in parentheses in (31) one
can note that the integrand of the outer integral decreases as |x — y|~> for large values
of y. Moreover, for values of |x — y| > 2«/§a, the integrand is infinitely smooth.
Therefore, by integrating over a subset ®™"° containing all points y € U‘}ZICD ;j such that
dist(y, 2) < diam €2, one correctly reconstructs the singularities of f(x) and obtains a good
quantitative approximation to f(x). This conclusion is supported by the numerical evidence
presented in the next section.

The drawback of formulae (31)-(33) is that the integration has to be done over an
unbounded set U‘]‘.:, ®;. However, by analyzing the expression in parentheses in (31), one can
note that the integrand of the outer integral decreases as s> (or, equivalently, |x — y|3) for
large values of y. Indeed, for s > 44/2a, the latter expression yields

9 22 TSPy, 1) Wi P (y, ¢
_PV/ # dzl = 2s / f—y)
as 0 72 — 52 0 (12 — 52)2
32 2v2a 2
<= / rm;em(y,t)dt = —3/ f(x)dx.
s 0 Q

Moreover, for the values of |x — y| > Zﬁa, the integrand is infinitely smooth. Therefore,
by integrating over a subset ®"™"° containing all points y € U‘]‘.:l ®; such that dist(y, 2) <
diam €2, one correctly reconstructs the singularities of f(x) and obtains a good quantitative
approximation to f (x). This conclusion is supported by the numerical evidence presented in
the next section.

13
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(a) (b) (©)

Figure 2. Reconstruction in 3D from spherical means centered on a surface of a cube: (a) phantom,
(b) reconstructed function, and (c) reconstruction in the presence of a source outside of the cube.

3.3. Reconstruction in the presence of exterior sources

The time-reversal reconstruction methods in TAT/PAT (i.e. methods based on the numerical
solution of the wave equation backward in time) have the following interesting property. If
the support of the initial perturbation f(x) has a part lying outside the region enclosed by
the acquisition surface €2, the time reversal still correctly reconstructs the part of f(x) lying
within €. In other words, the exterior sources do not affect the reconstruction within
[1, 22]. This property can turn out to be useful from a practical point of view. While the
presence of active sources outside the ROI is unlikely, the outgoing sound wave is likely to be
reflected by measuring equipment and to interfere with the measurements. Theoretically, the
time-reversal and equivalent methods are completely insensitive to such reflections, provided
that the measurements are conducted long enough for the total signal to vanish.

Since reconstruction methods based on the expansions in the series of the eigenfunctions
of the Dirichlet Laplacian on 2 [1, 22] are theoretically equivalent to the time reversal, they
also inherit the insensitivity to the exterior sources. On the other hand, all previously known
FBP-type inversion formulae for the spherical mean transform do not have this property: in
the presence of an exterior source, the reconstruction within €2 will be incorrect.

The present inversion formulae (and their generalizations in the following sections) are
based on the explicit solution of the wave equation (by means of double-layer potentials).
Thus, they inherit from the time-reversal methods the insensitivity to the exterior sources. A
numerical example demonstrating accurate reconstruction in the presence of an exterior source
is presented in the next section.

3.4. Numerical examples

An example illustrating reconstruction of a function from its spherical means with centers lying
on the surface of a cube is presented in figure 2. As a phantom, we used a set of 25 characteristic
functions of balls of various radii supported within the cube (—1, 1) x (—1, 1) x (—1, 1). The
centers of all the balls lied in the plane x3 = 0. The cross section of our phantom by the latter
plane is shown in figure 2(a). Part (b) of this figure demonstrates the cross section (by the
same plane) of the image reconstructed on the grid of size 129 x 129 x 129 using formula
(26). The simulated detectors (i.e. the centers of the integration spheres) were placed on the
uniform Cartesian 129 x 129 grids on each of the faces of the cube; there were 257 integration
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(a) (b)

Figure 3. Reconstruction in 2D from circular means centered on the perimeter of a square: (a)
phantom and (b) reconstruction.

spheres for each detector with the radii varying uniformly from 0 to 24/3. Our algorithm was
based on a straightforward discretization of equation (26), where finite differences were used
to compute the derivatives.

In order to illustrate the reconstruction in the presence of exterior sources, we added to the
phantom shown in figure 2(a) a ball of radius 0.08 located at the position (1.1,0,0) and computed
the spherical means corresponding to this extended set of sources. The size and location of
this additional ball were chosen so that all the spherical means used for the reconstruction
still vanished when the radii exceeded 2+/3. The result of the reconstruction computed using
formula (26) is shown in figure 2(c). The resulting image may seem indistinguishable from
the one in figure 2(b); in fact, the difference is about 4% in the L*° norm. (In the absence of
the discretization error, the images would exactly coincide.)

In figure 3, we demonstrate the reconstruction of a function in 2D from its circular means
centered on the boundary of a square (—1, 1) x (—1, 1) using a modified formula (31), with
the integration restricted to the subset @™ of U§=1® ; contained within the disk of radius

34/2 centered at the origin. (All the points y satisfying the condition dist(y, £2) < diam £ are
contained in ®"™".) The main goal of this simulation was to evaluate the effect of truncating the
integration region. To this end, we took care to eliminate other sources of error. In particular,
as a phantom we chose a smooth function shown in figure 3(a). Moreover, our implementation
of formula (31) used a spectrally accurate algorithm for computing the Hilbert transform and
a higher order polynomial interpolation during the backprojection. (The Hilbert transform
arises since the fraction 7/(t? —s?) in (31) can be re-written as 0.5/(z —s)+0.5/(t +s).) The
reconstructed function is shown in figure 3(b). The image is almost identical to the phantom;
the relative reconstruction error in this example equals 7.4 x 1072 in the L™ norm. In other
words, the truncation error is negligible for most practical applications, if all the points y
satisfying the condition dist(y, 2) < diam €2 are included in the truncated domain.

From the practical point of view, it may be interesting to see how the proposed inversion
formulae behave when some of the data are missing. (Such a situation arises, for example, in
breast imaging where detectors cannot be put on a closed surface surrounding the breast.) In
our next simulation, we reconstruct a phantom consisting of a sum of characteristic functions
of circles and ellipses, from circular means centered on the boundary of a square. We use
the same 2D algorithm as in the previous example, with integration restricted to the disk of
radius 3+/2 centered at the origin. The phantom is shown in figure 4(a). Figure 4(b) presents
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(a) (b)

Figure 4. Reconstruction in 2D from spherical means centered on the perimeter of a square: (a)
phantom, (b) reconstructed function and (c) reconstruction from partial data.

the reconstruction obtained from full noiseless data; it looks almost perfect. Part (c) of this
figure demonstrates reconstruction in which the circular means with the centers lying on the
right-hand side of the square are assumed unknown and replaced by zeros. The artifacts caused
by the absent data are clearly visible. Very similar results can be obtained in the 3D case, and
when reconstruction is done using the fast algorithm from [22]. The latter is not surprising
since the present algorithm and the technique of [22] are theoretically equivalent to the time
reversal. (In our experience, an explicit time reversal by means of a finite-difference marching
algorithm also yields similar results when applied to smooth functions.) The problem of
accurate reconstruction from the data measured from open surfaces is not completely resolved
yet; some results can be found in [23, 33, 36] and references therein.

4. Explicit inversion formulae for some other domains

4.1. Re-visiting the replication procedure for a cube and a square

The inversion formulae introduced in this paper for a cube (in 3D) and a square (in 2D) are based
on the explicit representations of a solution of the wave equation by double-layer potentials.
In general, double-layer potentials are frequently used to solve Dirichlet problems for various
PDE’s in the interior and/or exterior of bounded regions. Usually such formulations lead
to boundary integral equations for the potential densities that have to be solved numerically.
However, as explained in the previous sections, if the detectors (centers of spherical means)
are located on the boundary of a cube (or, in 2D, a square), the solution of the wave equation
can be represented by the double-layer potentials supported on certain periodic planes, with
certain periodic densities. Due to the symmetries in these geometries, the potentials vanish on
the planes, and the jump conditions relate the densities directly to the known boundary values,
thus providing the desired explicit reconstruction formulae.

This approach can be extended to obtain explicit reconstruction formulae for the
measurements made from the boundaries of certain polygons (in 2D) and polyhedra (in 3D)
possessing sufficient symmetries. These formulae will be similar to the present formulae for
the square and the cube, but the planes supporting the potentials and the replication procedure
defining the densities will be different in each case.

Before extending the inversion formulae to these new domains, let us provide an alternative
description of the replication procedure for a square and a cube—such that it would be easier
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Figure 5. Extending by odd reflections the function defined in square €2 to the whole plane.

to generalize to other geometries. We start with a square, in 2D. Our goal is, again, to find the
solution u” (x, t) of the initial-boundary-value problem (21) provided the boundary values of
u are known. To this end, let us construct a tessellation of the plane R? by squares of the size
2a x 2a, one of which coincide with Q = (—a, a) x (—a, a). In each square, we define yrep!
to equal £u” (in some local coordinates). The signs are chosen so as to be different in any
two adjacent squares. The local coordinates are defined in such a way that the function in any
two adjacent squares is odd with respect to the joint side of these two squares. An example
of such extension by odd reflection is illustrated in figure 5 where a function defined in the
square €2 is extended to the whole plane. (For simplicity of drawing, the function shown as
a gray-scale image in the figure is a sum of characteristic functions of disks. However, the
reader needs to remember that the functions discussed in this section are actually continuous
within €2.) The function u™P!(x, #) obtained as a result of such extension is continuous in x
everywhere except the boundary of each square. At each point of the boundary, it has a jump
equal to a doubled negative limiting value of u™P!(x, t) as x approaches the boundary from
the inside. Now we define the double-layer potential supported on all lines containing the
boundary of the squares, with the density equal to the jump in #™P'. This new procedure leads
to the same double-layer potentials as were described in section 2.3, with the densities equal
to —2P;ep "(x2, )n(T, t) on each family of lines ;- The rest of the reconstructing procedure
is the same.

Similarly, in order to obtain the double-layer potential for a solution of the wave equation
inacube Q = (—a, a) X (—a, a) x (—a, a), we tessellate the plane with shifted versions of 2.
In each shifted cube, we define u™P'(x, t) as a reflected version of u(x, f) with a sign opposite
to the sign used in the neighboring cubes. The local coordinates in each cube are defined in
such a way that u™P!(x, ) is odd with respect to each side of each cube. Now we define the
double-layer potentials supported on all planes that contain all faces of all cubes, with the
density equal to the jump of u™P!(x, t) across the cube faces. This new procedure produces
the same set of the double-layer potentials as was utilized in the section 2.2, and it leads to
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Figure 6. The tessellation schemes for some triangular domains: (a) equilateral triangle, (b) right

isosceles triangle and (c) triangle with angles %, £

T
7 3 andg.

the same reconstruction formulae. Although the double-layer potential described above is
supported on an unbounded set, only a bounded subset of it is actually used to reconstruct the
image within €2, due to the finite speed of sound.

One obvious extension of the present inversion formulae is to rectangular domains in
2D and cuboids in 3D. All the symmetries needed for the double-layer potentials to form
an explicit solution remain in place in these cases, and all the reconstruction formulae (for
the wave equation and for the spherical/circular means) remain the same, with a proper
re-definition of integration lines and planes.

4.2. Inversion formulae for certain triangular domains in 2D

In 2D, the inversion formulae presented in sections 2.3 and 3.2 can be generalized to certain
triangular domains. Namely, an equilateral triangle, a right isosceles triangle, and a triangle
with the angles 7, % and % can be used to tessellate the plane while preserving the necessary
symmetries. The corresponding tessellations are shown in figure 6. In each of the three cases
shown in the figure, the sides of the triangular fundamental domain €2 are marked by different
types of lines (solid, dashed, and dotted ones) so that the orientation of the local coordinates in
each of the triangles is clear from the picture. Signs ‘+” and ‘—’ indicate the choice of u or —u
in each triangle. Clearly, the resulting u™P' (x, ¢) is odd with respect to all lines containing all
sides of all the triangles. Therefore, if one defines the double-layer potential with the density
supported on these lines and equal to the jump of u™P!(x, ) across the corresponding face, the
value of this potential will vanish on all the triangle sides, and, due to the jump condition, this
potential will solve the initial-boundary-value problem for the wave equation in €2. Therefore,
the analog of formula (23) is valid with the corresponding re-definition of P™' and with
being one of the above-mentioned triangles.

This, in turn, allows us to obtain the analog of the inversion formulae (31)—(33) for the
reconstruction from circular means, by defining m™P' in a similar fashion. As it is the case for
the square domain, the latter formulae are exact if the integration is done over the unbounded
graph. However, due to the fast decrease of the expression in the parentheses in (31), one
can hope that the integration over the region containing all points y satisfying the condition
dist(y, 2) < diam 2 will produce an accurate approximation to f(x).
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Figure 7. Extending u(x, 1) by odd reflections from a pyramid to a cube.

4.3. Inversion formulae for certain polyhedral domains in 3D

In addition to cuboids, the techniques of the previous sections can also be used to find explicit
solutions and inversion formulae in 3D for some other domains. In particular, one can derive
explicit inversion formulae for reconstructing a function from its spherical means centered
on the surface of a right prism of height H, whose base is one of the triangles discussed in
the previous section. As before, it may be easier to start with finding the explicit solution to
the wave equation u(x, f) whose values on the boundary of the prism are known. In order
to obtain such a solution, we replicate u(x, t) in the directions parallel to the base of the
prism, according to the schemes in figure 6. Then, we replicate the resulting slab of height
H in the odd fashion with respect to the planes containing the bases of the prism, until u(x,
7) is extended to the function u™P'(x, r) defined in the whole R? in x. Further, we define
the double-layer potential with the density supported on planes containing the faces of all
the replicated prisms, and equal to the jumps of u(x, ) across the replicated faces. This
double-layer potential vanishes on all the faces, and, due to the jump condition, provides a
solution to the initial-boundary-value problem for the wave equation in 3D. This results in
an explicit formula analogous to (19). In order to obtain the analog of formula (26), it is
enough to define M™' according to the replication procedure described above. Due to the
Huygens principle, the integration is actually performed over the subset of the replicated faces
satisfying the condition |x — y| < diam €2; both formulae (for the spherical means and for the
wave equation) are exact in this case.

Finally, the present method can be extended to the triangular pyramid €2 whose vertices
have coordinates (0, 0, 0), (a, 0, 0), (0, a, 0), and (0, 0, a). (This region can also be described
as a pyramid whose side faces are equal right isosceles triangles.) Again, starting with the
solution u(x, £) of the wave equation in €, we define u™P!(x, t) as follows. First, we reflect u(x,
?) in odd fashion with respect to the vertical faces of 2 to extend u to a rectangular pyramid
(see figure 7 ). Then, we reflect (oddly) the pyramid with respect to its triangular faces to
obtain six pyramids (only four are shown in the figure) to form a cube. Then, the cube is
used to tessellate the whole space. As before, we define the double-layer potential by the
jumps of the resulting function u™P'(x, t) across all the replicated faces. The symmetries of
such an object guarantee that the potential vanishes on all the faces, and the jump conditions
yield the required limiting values as one approaches the boundary of €2 from the inside. Thus,
one obtains the exact solution to the initial-boundary-value problem corresponding to the time
reversal of the wave equation. By implementing a similar replication procedure to define
M™P!, one obtains an analog of the inversion formula (26) for reconstructing a function from
its spherical means centered on the surface of 2.

It is worth noting that, similar to the formulae for a cube and a square, all the formulae
discussed in this and previous sections also have the property of being insensitive to sources
lying outside of the domain surrounded by the acquisition surface.
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5. Conclusions

By utilizing the double-layer wave potentials, we found explicit solutions to the initial-
boundary-value problems for the wave equation in certain 2D and 3D domains. In problems of
TAT/PAT, this yields explicit expressions for the result of the time reversal, and thus explicitly
reconstructs the initial pressure distribution f(x). Further, by formulating the problem in
terms of spherical (circular) means, we obtain from the solutions to the wave equations
explicit closed-form inversion formulae of FBP type for the corresponding domains. In
2D, we presented inversion formulae for a square (or a rectangle), and we outlined their
generalization for an equilateral triangle, a right isosceles triangle, and a triangle with the
angles % % and %. In 3D, we derived formulae for a cube (with immediate extension to
a cuboid), and we discussed their generalization to right prisms whose bases are one of the
three above-mentioned triangles, and to a pyramid whose side faces are equal right isosceles
triangles.

In all cases, the formulae for the inversion of the wave equation data are in the form of the
double-layer potentials supported on a series of planes, with the densities whose values equal
to the known boundary values replicated according to the procedures described in the text.
The formulae for inverting the spherical (or circular) means easily follow from the ones for the
wave data. In the 3D case, due to the Huygens principle the integration in all the formulae is
restricted to a bounded subset of the planes. In 2D, in order to obtain the exact reconstruction,
one has to integrate over an unbounded domain. However, our numerical experiments suggest
that for a sufficiently accurate reconstruction, it is enough to integrate over a bounded subset
containing all points y satisfying the condition dist(y, 2) < diam 2.

Finally, all the presented inversion formulae remain exact within the domain even in the
presence of sources located outside the domain. (In order to observe this phenomenon in
3D, one may need to extend the measurement time (or the radii of the spherical means) to
make sure that the signal vanishes after the observation time.) Interestingly, although the
time-reversal and some series methods also have this property, the present formulae are the
only known explicit FBP-type inversion formulae that exhibit such behavior.
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